函数的单调性与最值(基础+复习+习题+练习)(共16页).doc

上传人:飞****2 文档编号:9069546 上传时间:2022-03-29 格式:DOC 页数:17 大小:1.08MB
返回 下载 相关 举报
函数的单调性与最值(基础+复习+习题+练习)(共16页).doc_第1页
第1页 / 共17页
函数的单调性与最值(基础+复习+习题+练习)(共16页).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《函数的单调性与最值(基础+复习+习题+练习)(共16页).doc》由会员分享,可在线阅读,更多相关《函数的单调性与最值(基础+复习+习题+练习)(共16页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上课题:函数的单调性与最值考纲要求: 理解函数的单调性、最大值、最小值及其几何意义; 会运用函数图像理解和研究函数的单调性、最值教材复习函数单调性和单调区间的定义:类别增函数减函数图像描述 自左向右看: 图像是 自左向右看: 图像是 单调性定义一般地,设函数的定义域为,区间,如果对于区间内任意两个自变量当时,都有 ,那么,就称在区间上是增函数当时,都有 ,那么,就称在区间上是减函数单调区间若函数在区间上是增函数或减函数,则称函数在这一区间具有 ,区间叫做的 利用定义法证明单调性的一般步骤: ; ; ; 函数的最值前提设函数的定义域为,如果存在实数满足条件 对于任意,都有

2、 存在 ,使得 对于任意,都有 存在 ,使得 结论为最大值为最小值 常见初等函数的单调区间幂函数指数函数对数函数三角函数多项式函数基本知识方法 函数单调性的定义:如果函数对区间内的任意,当时都有,则在内是增函数;当时都有,则在内时减函数。设函数在某区间内可导,若,则为的增函数;若,则为的减函数.单调性的定义的等价形式:设,那么在是增函数;在是减函数;在是减函数。复合函数单调性的判断: 函数单调性的应用.利用定义都是充要性命题.即若在区间上递增(递减)且();若在区间上递递减且.().比较函数值的大小可用来解不等式.求函数的值域或最值等讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须

3、先求函数的定义域,函数的单调区间是定义域的子集; 判断函数的单调性的方法有:用定义;用已知函数的单调性;利用函数的导数;如果的递增(减)区间是,那么在的任一非空子区间上也是增(减)函数;图象法;复合函数的单调性结论:“同增异减”; 奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性; 互为反函数的两个函数具有相同的单调性;在公共定义域内,利用函数的运算性质:若、同为增函数,则为增函数;为增函数;为减函数; 为增函数;为减函数. “对勾函数”:在上单调递增;在上是单调递减.证明函数单调性的方法:利用单调性定义;利用单调性定义.函数的单调区间必须是定义域的子集.两条结

4、论闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到;开区间上的“单峰”函数一定存在最大(小)值.典例分析:题型一:求函数的单调区间问题1(辽宁文)函数的单调增区间为 求下列函数的单调区间: 题型二:判断或证明函数的单调性问题2试讨论函数在上的单调性. (全国,节选)设函数,其中.略; 求证:当时,函数在区间上是单调函数 题型三:利用函数的单调性求字母的取值范围问题3(北京文)已知是上的增函数,那么的取值范围是 已知函数在区间上是减函数,求实数的取值范围题型四:函数的单调性的应用问题4(福建)已知为上的减函数,则满足的实数的取值范围是 若,则不等式的解集为 题型

5、五:单调性与最值问题5函数在区间上的最大值是 (重庆)()的最大值为题型六:抽象函数的单调性 问题6(山东模拟)设是定义在上的函数,且对任意实数、都有.求证:是奇函数;若当时,有,则在上是增函数.课后作业:利用函数单调性定义证明:在上是减函数函数在上为增函数,则实数的取值范围已知函数在区间上是减函数,试求的取值范围已知在上是的减函数,则的取值范围是 下列函数中,在区间上是增函数的是 为上的减函数,则 (全国)如果奇函数在区间上是增函数,且最小值为,那么在区间上是 增函数且最小值为增函数且最大值为减函数且最小值为 减函数且最大值为已知是偶函数,且在上是减函数,则是增函数的区间是 (湖南文)若与在

6、区间上都是减函数,则的取值范围是 (上海)若函数在上为增函数,则实数、的范围是 已知偶函数在内单调递减,若,则、之间的大小关系是_(兰州模拟)已知函数 是上的增函数,则实数的取值范围是 已知奇函数是定义在上的减函数,若,求实数的取值范围.已知函数,求函数的定义域,并讨论它的奇偶性和单调性.设,是上的偶函数求的值;证明在上为增函数 (北京东城模拟)函数对任意的,都有,并且当时.求证:是上的增函数;若,解不等式已知函数的定义域是的一切实数,对定义域内的任意都有,且当时,求证:是偶函数; 在上是增函数;解不等式走向高考: (天津)在上定义的函数是偶函数,且,若在区间是减函数,则函数 在区间上是增函数

7、,区间上是增函数在区间上是增函数,区间上是减函数在区间上是减函数,区间上是增函数在区间上是减函数,区间上是减函数(陕西文) 定义在上的偶函数满足:对任意的,有.则 w.w.w.k.s.5.u.c.o.m (福建)已知函数为上的减函数,则满足的实数的范围是 (江苏)的单调递增区间是 (重庆)已知定义域为的函数在上为减函数,且函数为偶函数,则(山东)下列函数既是奇函数,又在区间上单调递减的是(全国大纲)若函数在区间是增函数,则的取值范围是 (重庆)若函数是定义在上的偶函数,在上是减函数,且,则使得的的取值范围是 ;(安徽)若函数的递增区间是,则 (全国)已知若,那么 在上是减函数; 在上是减函数;在上是增函数; 在上是增函数;专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁