高级植物生理学课件第6章植物磷素营养代谢分子.ppt

上传人:wuy****n92 文档编号:90683126 上传时间:2023-05-17 格式:PPT 页数:83 大小:593.51KB
返回 下载 相关 举报
高级植物生理学课件第6章植物磷素营养代谢分子.ppt_第1页
第1页 / 共83页
高级植物生理学课件第6章植物磷素营养代谢分子.ppt_第2页
第2页 / 共83页
点击查看更多>>
资源描述

《高级植物生理学课件第6章植物磷素营养代谢分子.ppt》由会员分享,可在线阅读,更多相关《高级植物生理学课件第6章植物磷素营养代谢分子.ppt(83页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第八章 植物磷素营养代谢分子生理意义:磷是植物生长发育不可缺少的大量营养元素之一,是植物的重要组成部分,同时又以多种方式参与植物体内各种生理生化过程,对促进植物的生长发育和新陈代谢起重要作用。1、我国农田中有2/3严重缺磷。原因:被酸性土壤中的铁铝氧化物及石灰性土壤中的碳酸钙化合物固定,成为难被利用的固态磷。如石灰性土壤中磷肥当季利用率一般只有10左右。-土壤磷的有效性缺乏。实际上,酸性红黄壤与石灰性土壤中总磷一般比有效磷高几百倍。2、土壤中的总磷很低土壤学缺磷(本质缺磷)。Symptoms of Phosphorus Deficiency and over-useSymptoms of Ph

2、osphorus Deficiency The plant will be short when phosphorus deficiency,and stem is thin.the development of root is not better.And leaves appear dark green or gray,lackluster.And purple appears.The symptom extends from old leaves to tenders.The fruit and seed of plant Phosphorus deficiency are small

3、and less,which decrease productivity and quality.NPKCitrus QualityLow P mis-shapen fruit coarse rind open centres low juice(acid)Low N thin skin(desirable)low yieldHigh N thick skin less juice(acid)自左至右,依次为油菜幼叶至老叶,缺磷油菜叶片从暗紫发展至紫红色。tender oldPhosphorus DeficiencyLeaves of rape appear amaranth because

4、of accumulating carbohydrate in plant.Leaves of soybean appear amaranth because of accumulating carbohydrate in plant.P normal DeficiencyRicePurple leaves of phosphorus deficient maizePurple leaves,Low fruit,thin stem and drawf plant1植物的磷素营养一、植物体内磷的含量分布和形态1、存在的形态有机磷:85左右,如核酸、磷脂和植素等无机磷:15左右,如以钙、镁和钾等的

5、磷酸盐形态存在。2、分布植物的全磷含量一般为其干物质重的0.05-0.5,多分布在生长旺盛的器官和部位。如芽、根的生长点,随生长中心的转移而转移。有明显顶端优势,在生殖生长阶段,多向种子和果实运输。如:三叶草50%磷在细胞质中,21%在细胞核,19%在质体中,线粒体中占10%左右。3、磷的吸收形态(1)正磷酸:H2PO4-,HPO42-,和PO43-(以H2PO4-O4为主(2)偏磷酸:PO3-(3)焦磷酸:P2O74-,焦磷酸盐水解后被吸收。(4)有机磷化合物:已糖磷酸酯、甘油磷酸酯、蔗糖磷酸酯、核酸、卵磷脂,且吸收速度超过无机磷酸盐。4、磷吸收的部位根毛和表皮细胞吸收的磷,经皮层进入体内代

6、谢。最先合成的有机磷是ATP,此外还合成6磷酸果糖(F6P),1,6二磷酸果糖(FDP)和磷酸甘油酸(pGA)等。糖酵解中的含磷化合物。(内皮层)。合成的有机磷迅速向中柱转移。皮层中柱,主要含磷化合物是6磷酸葡萄糖,无机磷占总磷量的60%以上。中柱导管,有机磷通过脱磷酸化过程而形成无机磷,然后输送到地上部。磷从皮层经中柱进导管运输到地上部,请问顶端生长点细胞分裂所需的P是如何得到的?是以什么形态的P运输的?二、植物磷素营养的生理功能1、P是植物体内一系列重要物质的组成成分核酸、磷脂、植素、ATP含P的酶和蛋白质。2、磷参与光合作用各碳水化合物的合成与运转光合作用:固定CO2植物合成的碳水化合物

7、种类及运输形式蔗糖、木苏糖、部分棉子糖,以蔗糖为主要运输糖而又以蔗糖磷酸酯的形态进行运输。3磷促进植物的氮代谢和脂肪代谢A、参与呼吸作用的酶类组成中都含有磷;B、促进植物的呼吸作用,增加有机酸和ATP,从而接纳更多NH4+的形成氨基酸;C、磷是磷酸吡哆醛的组成成分,磷酸吡哆醛是氨基转移酶的活性基团;D、磷是硝酸还原酶和亚硝酸还原酶的重要组成部分,参与NO3的还原和同化;E、磷可促进核酸和蛋白质的合成;F、促进生物固氮作用;G、磷参与糖转化为甘油,再由甘油和脂肪酸合成脂肪;4、磷促进植物代谢过程协调发展,使植株生长健壮,抗逆性增强,促进植物的生长发育,提早开花结实,缩短生育期。三、植物磷效率的概

8、念1、植物养分效率:指生长介质中单位养分产出的生物量或经济产量。2、单位养分产量(1)生长介质中养分供应充足时,养分效率主要决定于植物的生物量或产量潜力;吸收能力(uptake ability),以总吸收量表示。(2)在生长介质中养分不足时,养分效率决定于植物从介质中吸取养分的能力,即:在体内相对低的养分浓度下,保持正常代谢能力,生理利用率(physiological use efficiency),以植物体内单位养分量生产的生物量或经济产量表示。3、养分高效基因型指该基因型在这种养分低于正常供应的生长介质中能生产出高于标准基因型的生物量或经济产量。植物活化及吸收土壤磷的能力显然是磷高效基因型

9、的最重要特征。4、磷吸收量植物从土壤中吸收磷的能力。它受到如下因素的影响:(1)根表面积和根的形态学特征;(2)VA菌根及土壤微生物;(3)根际PH值;(4)根分泌物;(有机酸,酸性磷酸酶)(5)磷酸盐的吸收动力学性质,即磷的形态,植物同化能力与吸收能力等。四、植物耐低磷胁迫性状的遗传特征1、研究历史Nielsen和Barber(1978)比较了玉米近交种及其杂交种在田间对磷的吸收利用,发现玉米品种间磷积累的差异至少受两个基因控制。Andonova等(1983)发现玉米杂交种间吸收积累氮、磷、钾能力与其吸收利用的遗传力有关。玉米叶片和籽粒中的磷浓度受加性基因作用。Reiter等(1991)以耐

10、低磷胁迫能力分离的一个玉米F2群体(由两个自交系NY821与H99)杂交产生)为材料,鉴定了77个RFLP(Restriction fragment length polymorphism)下获得耐低磷的表型分离数据。通过这些表型分离数据与这77个RFLP标记的基因型数据相关分析,鉴定出与低磷条件下总干物质重分离显著相关的5个RFLP位点,其中4个标记位点与来自耐低磷的亲本(NY821)的等位基因连锁,一个位点与来自对低磷敏感的亲本(H99)的等位基因连锁。这5个位点分别位于4条染色体上。遗传特性(1)蚕豆品系在缺磷条件下,磷高效品种与磷中效品种杂交所得到的F1代具有超亲现象,其广义遗传力为7

11、0%。(2)番茄品种耐低磷能力的差异主要表现为其地上部干物重差异。耐低磷能力强和能力弱的品种杂交F1代干物重超过亲本的89%,且分离后代中一些品系的磷吸收能力特别强。(3)水稻的分蘖能力受磷的影响很大。在缺磷胁迫条件下,水稻的相对分蘖力(relative tillering ability,RTA)是比较稳定的,可作为筛选水稻耐磷的一个参数,但品种间存在差异。耐低磷亲本富含隐性基因,敏感与中等敏感亲本具更多的显性基因。第二节 原核(E.Coli)磷吸收转运一、运输途径1 运输途径 通过荚膜(Capsule)然后进入细胞外膜与细胞之间的周质空间(periplasmic space,PPS)。2

12、吸收运输系统 有两个吸收运输系统:低亲和与高亲和系统。当磷素供应充足时,磷分子通过细胞外膜孔蛋白(Outer membrane pore protein)ompC和ompF扩散到细胞周质空间,然后被细胞膜上的无机磷酸盐载体识别运送到细胞内。细胞可以多磷酸盐颗粒的形式贮存吸收磷。这一吸收转运系统属磷低亲和吸收转运系统。当磷供应不足时,即磷饥饿条件下,大肠杆菌和其他微生物能诱导产生一系列酶蛋白,提高细胞对磷的吸收转运与代谢能力。由受磷饥饿诱导表达的基因(phosphorus starvation inducible gene,PSI gene)组成的磷调节系统,称为磷调节子(Pho regulon

13、).二、大肠杆菌磷饥饿诱导基因 1 诱导作用 在大肠杆菌代谢酶活性与营养因子胁迫关系的研究中,在酸性条件下(pH4.5),且当磷饥饿时,大肠杆菌有酸性磷酸酶的合成。酸性磷酸酶水解磷酸对硝基苯为对硝基苯酚,使溶液变黄色。当加入KOH使培养基pH达9以上时,酸性磷酸酶水解反应停止,但仍然观察到黄色的对硝基苯酚浓度继续增加。为明确在高pH时反应继续进行是由残余酸性磷酸酶水解作用造成,还是另一种酶在起作用,将这种缺磷的高pH生长介质于90C水煮10min,彻底消除酸性磷酸酶的活性,然后再培养大肠杆菌,结果仍发现溶液黄色继续增加,证明是另一种受磷饥饿诱导的水解酶在起作用。碱性磷酸酶 由两个相同亚基通过非

14、共价键(noncovalent bonds)连接组成的二聚体,亚基内有二硫键。当在低pH或二硫键被还原时,酶以单体存在,没有活性,具有温度不稳定性。在Zn2+或Mg2+存在的条件下,单体再形成二聚体恢复酶的活性。在磷饥饿时,碱性磷酸酶一般位于细胞的表面或细胞周质空间。3 两个磷酸盐吸收转运系统(1)无机磷酸盐转运系统(phosphate inorganic transport,Pit);(2)特异磷酸盐转运系统(phosphate specific transport,PST)。其中一个pst基因产物是磷酸盐结合蛋白,命名为PHOS。PHOS像碱性磷酸酶一样,位于细胞周质空间,受磷饥饿诱导。在

15、大肠杆菌中至少已发现了25个磷饥饿诱导(phosphate starvation inducible,psi)基因。除phoA、phoS外,重要的psi基因包括外膜孔蛋白E的基因phoE、3-磷酸甘油吸收和结合蛋白基因ugpA与ugpB、磷调节子表达调节基因phoR 与phoB等。4 磷饥饿诱导大肠杆菌增强磷吸收机制 磷饥饿诱导产生高效的细胞外膜孔蛋白,水解酶结合蛋白 磷饥饿诱导的带负电荷的PHOE蛋白(外膜孔蛋白基因phoE编码的蛋白)识别无机磷,并将其运送到 细胞周质空间,其运送效率比带正电荷的细胞外膜孔蛋白OMPC和OMPF高6-8倍。细胞周质空间的磷被细胞膜上的磷结合蛋白结合,通过磷转运系统(PST)穿过细胞质膜进入细胞内。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁