《2022全国甲卷高考理科数学试题及答案解析.docx》由会员分享,可在线阅读,更多相关《2022全国甲卷高考理科数学试题及答案解析.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022全国甲卷高考理科数学试题及答案解析2022全国甲卷高考理科数学试题及答案截止目前,2022年全国甲卷高考理科数学试卷还未出炉,待高考结束后,小编会第一时间更新2022年全国甲卷高考理科数学试卷,供大家对照、估分、模拟使用。高考数学答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化有:分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。零点分段讨论法:适用于含一个字母的多个绝对值的情况。两边平方法:适用于两边非负的方程或不等式。几何意义法:适用于有明显几何意义的情况。2、因式分解根据项数选择方
2、法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:设元换元解元还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:设列解写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。因式分解型:(-)()=0两种情况为或型配成平方型:(-)2+()
3、2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把m化成完全平方式。即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。11、解含参方程方程中除过未知数以外,含有的字母叫参数,这种方程叫含参方程。解含参方程一般要用分类讨论法,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)a
4、x+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。13、恒不等成立的条件由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:14、平移规律图像的平移规律是研究复杂函数的重要方法。平移规律是:15、图像法讨论函数性质的重要方法是图像法看图像、得性质。定义域图像在X轴上对应的部分值域图像在Y轴上对应的部分单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。最值图像点处有值,图像最低点处有最小值奇
5、偶性关于Y轴对称是偶函数,关于原点对称是奇函数16、函数、方程、不等式间的重要关系方程的根高考数学答题窍门1、审题要慢,答题要快有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。2、运算要准,胆子要大高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角
6、尖,一旦发现自己走进死胡同,还是要立刻迷途知返。3、先易后难,敢于放弃能够增强信心,使思维趋向,对发挥水平极为有利;另一方面如果先做难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。4、先熟后生,合理用时面对熟悉的题目,自然象吃了定心丸,做起来得心应手,会使你获得好心情,并且可以在最短时间内完成,留下更多的时间来思考那些不熟悉的题目。有些题目需花很多时间却只得到很少分数,有些题目只要花很少时间却有很高的分值。所以应先把时间用在那些较易题或分值较高题目上,最大限度地提高时间的利用率。