《2015年数学考研大纲.pdf》由会员分享,可在线阅读,更多相关《2015年数学考研大纲.pdf(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2 0 1 5 年数学考研大纲 2015年考研大纲将于2014年9月份发布,考研集训营网会在第一时间公布2015年考研大纲,希望对大家备考有所帮助。由于考研大纲每年变化不大,同学们可以先参考2014年考研大纲进行备考,祝大家考研顺利!考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高 等 教 学 约56%线 性 代 数 约22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题6小题,每题4分,共24分解 答 题(包括证明
2、题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:.sinx,.(.1lim-=1 lim 1 +=e*7。X xJ函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界
3、性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9 .理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.1 0 .了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值
4、定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定 理 洛 必 达(L H o s p i t al)法则函数单调性的判别函数的极值函数图形的凹凸性、拐 点 及 渐 近 线 函 数 图 形 的 描 绘 函 数 的 最 大 值 和 最 小 值 弧 微 分 曲 率 的 概 念 曲 率 圆与曲率半径考试要求1 .理解导数和微分的概念,理解导数与微分的关系,理解导数的儿何
5、意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2 .掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3 .了解高阶导数的概念,会求简单函数的高阶导数.4 .会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5 .理解并会用罗尔(R o l l e)定理、拉格朗日(L ag r an g e)中值定理和泰勒(T ay l o r)定理,了解并会用柯西(C au c h y)中值定理.6 .掌握用洛必达法则求未定式极限
6、的方法.7 .理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8 .会用导数判断函数图形的凹凸性(注:在区间伍,8)内,设函数/(X)具有二阶导数。当/(x)0 时,/(x)的图形是凹的;当/(x)c o s x l n(l +x)及(l +x)的麦克劳林(M a c l a ur i n)展开式,会用它们将一些简单函数间接展开成幕级数.1 1 .了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在-/,/上的函数展开为傅里叶级数,会将定义在 0,/上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常
7、微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯 努 利(B e r n o ul l i)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(E ul e r)方程 微分方程的简单应用考试要求1 .了解微分方程及其阶、解、通解、初始条件和特解等概念.2 .掌握变量可分离的微分方程及一阶线性微分方程的解法.3 .会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4 .会用降阶法解下列形式的微分方程
8、:y(n,=/(x),=于(x,y )和=f(y,y).5 .理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩 阵 的 概 念 矩 阵 的 线 性 运 算 矩 阵 的
9、 乘 法 方 阵 的 暴 方 阵 乘 积 的 行 列 式 矩 阵 的转 置 逆 矩 阵 的 概 念 和 性 质 矩 阵 可 逆 的 充 分 必 要 条 件 伴 随 矩 阵 矩 阵 的 初 等 变 换 初等矩阵 矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幕与方阵乘积的行列式的性质.3 .理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4 .理解矩阵初等变换的概念,了解初等矩阵
10、的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5 .了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关 概 念“维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1 .理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3 .理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极
11、大线性无关组及秩.4 .理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5 .了解维向量空间、子空间、基底、维数、坐标等概念.6 .了解基变换和坐标变换公式,会求过渡矩阵.7 .了解内积的概念,掌握线性无关向量组正交规范化的施密特(S ch mi d t)方法.8 .了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cr a mer)法则齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1 .会用克拉默法则.2.理解齐次线
12、性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3 .理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4 .理解非齐次线性方程组解的结构及通解的概念.5 .掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1 .理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化
13、为相似对角矩阵的方法.3 .掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概
14、率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函
15、数F(x)=PX x(-oo X 0)的指数分布成 外 的概率密度为小、若x 0f(x)=0 若x 4 05 .会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1 .理解多维随机变量的概念,理解多维随机变量的分布的概念和性质.理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机
16、变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3 .掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4 .会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1 .理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Ch eb ysh ev)不 等 式
17、切 比 雪 夫 大 数 定 律 伯 努 利(B er n oul l i)大 数 定 律 辛钦(K h in c h in e)大数定律 棣莫弗-拉普拉斯(D e M o iv r e -l a p l a c e)定理列维林德伯格(L e v y-L in d b e r g)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方
18、差和样本矩?分 布 f 分 布 尸 分布分位数正态总体的常用抽样分布考试要求1 .理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:S21n-l豆(X,-又)21=12.了解力2分布、f 分布和尸分布的概念及性质,了解上侧a 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有 效 性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.