《2023与2023年考研数学大纲变化对比数一.pdf》由会员分享,可在线阅读,更多相关《2023与2023年考研数学大纲变化对比数一.pdf(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023与2023年考研数学大纲变化比照数一章节2 0 2 3 年数学考试大纲考试内容和考试要求2 0 2 3 年数学考试大纲考试内容和考试要求变化比照高等、山,.数学、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数根本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其 性 质 函 数 的 左 极 限 和 右 极 限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比拟 极限的四那么运算 极限存在的两个准那么:单调有界准那么和夹逼准那么两个重要极限:s in x 1l im-=IX(1 Yl im
2、 1 +-=eX 7函数连续的概念函数间断 点的 类 型 初 等 函 数 的 连 续 性 闭 区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.r 解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握根本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四那么运算法那么.7.掌握极限存在的两个准那么,并会利用它们求极限,掌握利用两个重要极限求极限的方法.考试内容函数的概念及表示法 函数的有界性
3、、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数根本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其 性 质 函 数 的 左 极 限 和 右 极 限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比拟 极限的四那么运算 极限存在的两个准那么:单调有界准那么和夹逼准那么两个重要极限:s in x 1l im-=I1 Xl im(l +R =eX J函 数 连 续 的 概 念 函 数 间 断 点的 类 型 初 等 函 数 的 连 续 性 闭 区间上连续函数的性质考试要求I.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、
4、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4,掌握根本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四那么运算法那么.7.掌握极限存在的两个准那么,并会利用它们求极限,掌握利用两个重要极限求极限的方法.比照:无变化8 .理解无穷小量、无穷大量的概念,掌握无穷小量的比拟方法,会用等价无穷小量求极限.9 .理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.1 0 .了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性
5、、最大值和最小值定理、介值定理),并会应用这些性质.8 .理解无穷小量、无穷大量的概念,掌握无穷小量的比拟方法,会用等价无穷小量求极限.9 .理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.1 0 .了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.-、一元函数微分学考试内容导数和 微 分 的 概 念 导 数 的 几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四那么运算根本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微 分 法 高 阶 导 数 一阶微
6、分形式的不变性微分中值定理 洛 必 达(1 H o s p it al)法那么函 数 单 调 性 的 判 别 函 数 的 极 值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最 小 值 弧 微 分 曲 率 的 概 念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2 .掌握导数的四那么运算法那么和复合函数的求导法那么,掌握根本初等函数的导数公式.了解微分的四那么运算法那么和一阶微分形式的不变性,会求函数的微分.3.了解高阶导
7、数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5 .理解并会用罗尔(R o l l e)定考试内容导 数 和 微 分 的 概 念 导 数 的 几何意义和物理意义函数的可导性与 连 续 性 之 间 的 关 系 平 面 曲线的切线和法线导数和微分的四那么运算根本初等函数的导数复合函数、反函数、隐函数以及参数方程所确 定 的 函 数 的 微 分 法 高 阶 导 数 一阶微分形式的不变性微分中值定理 洛 必 达(1 H o s p it al)法那么函 数 单 调 性 的 判 别 函 数 的 极 值函数图形的凹凸性、拐点及渐近线函数图形的
8、描绘函数的最大值与最 小 值 弧 微 分 曲 率 的 概 念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2 .掌握导数的四那么运算法那么和复合函数的求导法那么,掌握根本初等函数的导数公式.了解微分的四那么运算法那么和一阶微分形式的不变性,会求函数的微分.3 .了解高阶导数的概念,会求简单函数的高阶导数.4 .会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5 .理解并会用罗尔(R o l l e)定比照:无变
9、化理、拉格朗日(L agr an ge)中值定理和泰勒(T ay l o r)定理,了解并会用柯西(C au chy)中值定理.6 .掌握用洛必达法那么求未定式极限的方法.7 .理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8 .会用导数判断函数图形的凹凸性(注:在区间(氏。)内,设函数/(X)具 有 二 阶 导 数。当/(幻 0时,/(%)的图形是凹的;当/(x)()时,/(X)的图形是凹的;当/(x)0 时,/(工)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9 .了解曲率、曲率圆与曲率半径的概念,
10、会计算曲率和曲率半径.-、一元函数积分学考试内容原 函 数 和 不 定积分的概念不定积分的根本性质根本积分公式定积分的概念和根本性质定积分中值定理积分上限的函数及其导数 牛顿-莱布尼茨(N ew t o n-L eibn i z)公 式 不 定 积 分和定积分的换元积分法与分部积分法 有 理 函 数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1 .理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的根本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4 .理解积分上限的
11、函数,会求考试内容原 函 数 和 不 定 积 分 的 概 念 不定积分的根本性质根本积分公式定积分的概念和根本性质定积分中值定理积分上限的函数及其导数 牛顿-莱布尼茨(Ne w t o n-Le i b n i z)公式 不定积分和定积分的换元积分法与分部积分法 有 理 函 数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1 .理解原函数的概念,理解不定积分和定积分的概念.2 .掌握不定积分的根本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3 .会求有理函数、三角函数有理式和简单无理函数的积分.4 .理解积分上限的函数,会求比照:无
12、变化它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为的立体体积、功、引力、压力、质心、形心等)及函数的平均值.它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运 算向量的数量积和向量积 向量的混合 积 两 向
13、 量 垂 直、平行 的 条 件 两向量的夹角向量的坐标表达式及其运算 单位向量 方向数与方向余 弦 曲 面 方 程和空间曲线方程的概念 平面方程 直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离 球面 柱面旋 转 曲 面 常 用的二次曲面方程及其 图 形 空 间 曲 线 的 参 数 方 程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运
14、算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及考试内容向量的概念向 量 的 线 性 运 算向量的数量积和向量积向量的混合积 两向量垂直、平 行 的 条 件 两向量的夹角向量的坐标表达式及其运算 单位向量 方向数与方向余 弦 曲 面 方 程和空间曲线方程的概念 平面方程 直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离 球面 柱面旋
15、转 曲 面 常 用的二次曲面方程及其 图 形 空 间 曲 线 的 参 数 方 程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲
16、面的方程及比照:无变化其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方8.五、多元函数微分学考试内容多元函数的概念二元函数 的几 何 意 义 二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法 二 阶 偏 导 数 方 向 导 数 和 梯 度空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶
17、泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,考试内容多 元 函 数 的 概 念 二 元 函 数 的几 何 意 义 二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度空间曲线的切线和法平面 曲面的切平
18、面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,比照:无变化并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值
19、和条件极值的概念,掌握多元函数极值存在的必要条件,r解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会
20、解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计 算 和 应 用 两 类 曲线积分的概念、性质及计算两类曲线积分的关系 格 林(G r e e n)公式 平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算 两类曲面积分的关 系 高 斯(G a u s s)公 式 斯 托 克斯(S t o k e s)公 式 散 度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2 .掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面
21、坐标).3 .理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4 .掌握计算两类曲线积分的方法.考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系 格 林(G r e e n)公 式 平 面 曲 线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系 高 斯(G a u s s)公式 斯托克斯(S t o k e s)公式 散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1 .理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2 .掌握二重积分的计算方法(直角坐
22、标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3 .理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4 .掌握计算两类曲线积分的方法.比照:无变化5 .掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6 .了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).5 .
23、掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6 .了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7 .了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功 及 流 量 等).七、无穷级数考试内容常数项级数的收敛与发散的概念 收 敛 级 数 的 和 的 概 念 级 数 的根 本 性 质 与 收 敛 的 必 要 条 件 几 何级 数 与P级 数 及 其 收 敛
24、 性 正 项 级数 收 敛 性 的 判 别 法 交 错 级 数 与 莱布 尼 茨 定 理 任 意 项 级 数 的 绝 对 收敛 与 条 件 收 敛 函 数 项 级 数 的 收 敛域与和函数的概念 基级数及其收敛半径、收敛区间(指 开 区 间)和 收敛域 暴级数的和函数 幕级数在其收敛区间内的根本性质简单幕级数 的 和 函 数 的 求 法 初 等 函 数 的 幕级 数 展 开 式 函 数 的 傅 里 叶(F o ur ie r)系 数 与 傅 里 叶 级 数 狄利 克 雷(D ir ic h l e t)定理 函数在 一/,/上 的 傅 里 叶 级 数 函 数 在 0,/上的正弦级数和余弦级数考
25、试要求1 .理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的根本性质及收敛的必要条件.2 .掌握几何级数与p级数的收考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的根 本 性 质 与 收 敛 的 必 要 条 件 几 何级 数 与P级 数 及 其 收 敛 性 正 项 级数 收 敛 性 的 判 别 法 交 错 级 数 与 莱布 尼 茨 定 理 任 意 项 级 数 的 绝 对 收敛 与 条 件 收 敛 函 数 项 级 数 的 收 敛域 与 和 函 数 的 概 念 基 级 数 及 其 收敛半径、收 敛 区 间(指 开 区 间)和 收敛域 幕级数的和函数 幕级数在其收敛区间内的
26、根本性质简单品级数 的 和 函 数 的 求 法 初 等 函 数 的 幕级 数 展 开 式 函 数 的 傅 里 叶(F o ur ie r)系数与傅里叶级数 狄利 克 雷(D ir ic h l e t)定理 函数在 一/,/上 的 傅 里 叶 级 数 函 数 在 0,/上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的根本性质及收敛的必要条件.2 .掌握几何级数与p级数的收比照:无变化敛与发散的条件.3.掌握正项级数收敛性的比拟判别法和比值判别法,会用根值判别法.4.掌 握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛
27、与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幕级数收敛半径的概念、并掌握辕级数的收敛半径、收敛区间及收敛域的求法.8.了解辕级数在其收敛区间内的根本性质(和函数的连续性、逐项求导和逐项积分),会求一些基级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.敛与发散的条件.3.掌握正项级数收敛性的比拟判别法和比值判别法,会用根值判别法.4 .掌握交错级数的莱布尼茨判别法.5 .了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7 .理解幕级数收敛半径的概念、并掌握辕级数的收敛半
28、径、收敛区间及收敛域的求法.8,了解辕级数在其收敛区间内的根本性质(和函数的连续性、逐项求导和逐项积分),会求一些基级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.1 0.掌握 e,s i n x,c o s x,1 0.掌握s i n x,c o s x,l n(l +x)及(1 +x)a的 麦 克 劳 林(M a c l a ur in)展开式,会用它们将些简单函数间接展开为基级数.1 1.了解傅里叶级数的概念和狄 利 克 雷 收 敛 定 理,会将定义在l n(l +x)及(l +x)。的 麦 克 劳 林(M a c l a ur in)展
29、开式,会用它们将些简单函数间接展开为幕级数.1 1.r 解傅里叶级数的概念和狄 利 克 雷 收 敛 定 理,会将定义在 一/,/上的函数展开为傅里叶级数,一/,/上的函数展开为傅里叶级数,会将定义在 0,/上的函数展开为正 会将定义在 0,/上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分 方 程 的 根 本 概 念 变 量可别离的微分方程齐次微分方程一 阶 线 性 微 分 方 程 伯 努 利(B e r n o ul l i)方 程 全 微 分 方 程可用简单的变量代换求解的某些微分 方 程
30、可 降 阶 的 高 阶 微 分 方 程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线考试内容常 微 分 方 程 的 根 本 概 念 变 量可别离的微分方程齐次微分方程一 阶 线 性 微 分 方 程 伯 努 利(B e r n o ul l i)方 程 全 微 分 方 程可用简单的变量代换求解的某些微分 方 程 可 降 阶 的 高 阶 微 分 方 程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线比照:无变化性微分方程简单的二阶常系数非齐次线性微分方程欧拉(E ul e r)方程微分方程的简单应用考试要求1 .了解微分
31、方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可别离的微分方程及一阶线性微分方程的解法.3 .会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解以下形式的微分方程:严=/(x),y=/3y)和 y=/(y,/).5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8 .会解欧拉方程.9.会用微分方程解决一些简单的应用问题.性微分方程简单的二阶常系数非齐次线性微分方程欧拉(
32、E ul e r)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2 .掌握变量可别离的微分方程及一阶线性微分方程的解法.3 .会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4 .会用降阶法解以下形式的微分方程:kB)=/(x),/=/(%,/)和 y=/(y,/)5.理解线性微分方程解的性质及解的结构.6 .掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7 .会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8 .会解欧拉方程.9 .会用微分方
33、程解决一些简单的应用问题.行列氏考试内容行列式的概念和根本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2 .会应用行列式的性质和行列式 按 行(列)展开定理计算行列式.考试内容行列式的概念和根本性质行列 式 按 行(列)展开定理考试要求1 .了解行列式的概念,掌握行列式的性质.2 .会应用行列式的性质和行列式 按 行(列)展开定理计算行列式.比照:无变化线1 I-、矩阵考试内容矩阵的概念 矩 阵 的 线 性 运算 矩阵的乘法 方阵的塞 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价
34、分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幕与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.考试内容矩 阵 的 概 念 矩 阵 的 线 性 运算 矩 阵 的 乘 法 方 阵 的 哥 方 阵乘 积 的 行 列 式 矩 阵
35、 的 转 置 逆 矩阵的概念和性质矩阵可逆的充分必 要 条 件 伴 随 矩 阵 矩 阵 的 初 等变 换 初 等 矩 阵 矩 阵 的 秩 矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的哥与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必耍条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.
36、了解分块矩阵及其运算.比照:无变化U fjfl MM向量考试内容向量的概念向量的线性 组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关 组 等 价 向 量 组 向 量 组 的 秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵 向 量 的 内 积 线 性 无 关 向 量 组的正交标准化方法标准正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关考试内容向量的概 念 向 量 的 线 性 组合与线性表示向量组
37、的线性相关与线性无关向量组的极大线性无关 组 等 价 向 量 组 向 量 组 的 秩向量组的秩与矩阵的秩之间的关系向 量 空 间 及 其 相 关 概 念 维向量空间的基变换和坐标变换过渡矩阵 向 量 的 内 积 线 性 无 关 向 量 组的正交标准化方法标准正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关比照:无变化组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维
38、向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交标准化的施密特(S c h m i d t)方法.8.了解标准正交基、正交矩阵的概念以及它们的性质.组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交标准化的施密特(S c h m i d t)方法.8.了解标准正交基、正交矩阵的概念以及它们的性质.四、线性
39、方程组考试内容:线性方程组的克莱姆(C ra m e r)法那么齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的根底解系和通解解空间非齐次线性方程组的通解考试要求1 .会用克莱姆法那么.2 .理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的根底解系、通解及解空间的概念,掌握齐次线性方程组的根底解系和通解的求法.4 .理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.考试内容:线性方程组的克莱姆(C ra m e r)法那么齐次线性方程组有非零
40、解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的根底解系和通解解空间非齐次线性方程组的通解考试要求1.会用克莱姆法那么.2 .理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3 .理解齐次线性方程组的根底解系、通解及解空间的概念,掌握齐次线性方程组的根底解系和通解的求法.4 .理解非齐次线性方程组解的结构及通解的概念.5 .掌握用初等行变换求解线性方程组的方法.比照:无变化-Tl.、矩阵的特征值和特征向111考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似
41、对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件“掌握将矩阵化为相似
42、对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.比照:无变化二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和标准形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、标准形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和标准形用正交变换和配方法化二次型为标准形二次型及其
43、矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、标准形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.比照:无变化、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的根本性质古典型概率几何型概率条件概率概率的根本公式事件的独立性独立重复试验考试要求1.了解样本空间(根本领件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,考试内容随机事件与样本空间事件的关系与运算完
44、备事件组概率的概念概率的根本性质古典型概率几何型 概 率 条件概率概率的根本公式事件的独立性独立重复试验考试要求1.了解样本空间(根本领件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,比照:无变化概率论与数理统计掌握概率的根本性质,会计算占典型概率和儿何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(B a y e s)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.掌握概率的根本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式
45、,以及贝叶斯(B a y e s)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.-、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数F(x)=PX x (-o o x 0)的指数分布E(2)的概率密度为.“e ,若x 0,0,若5 .会求随机变量函数的分布.考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布
46、考试要求1 .理解随机变量的概念,理解分布函数产(X)=PX x (-0 0 x 0)的指数分布E(/l)的概率密度为c 、(双 口,若x 0,/W =1 0,若 XV。.5 .会求随机变量函数的分布.比照:无变化-二.、多维随机变量及其分布考试内容多 维 随 机 变 量 及 其 分 布 二 维离散型随机变量的概率分布、边缘分布 和 条 件 分 布 二 维 连 续 型 随 机 变量的概率密度、边缘概率密度和条件密 度 随 机 变 量 的 独 立 性 和 不 相 关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性
47、质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的 概 率 密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.考试内容多 维 随 机 变 量 及 其 分 布 二 维离散型随机变量的概率分布、边缘分布 和 条 件 分 布 二 维 连 续 型 随 机 变量的概率密度、边缘概率密度和条件密 度 随 机 变 量 的 独 立 性 和 不 相 关性
48、 常 用 二 维 随 机 变 量 的 分 布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的 概 率 密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.比照:无变化四、随机变量的数字特征考试内容随 机 变 量 的 数 学 期 望(
49、均 值)、方差、标 准 差 及 其 性 质 随 机 变 量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理 解 随 机 变 量 数 字 特 征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的根本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.考试内容随 机 变 量 的 数 学 期 望(均 值)、方差、标 准 差 及 其 性 质 随 机 变 量 函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理 解 随 机 变 量 数 字 特 征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的根本性质,并掌握常用分布的数字特征.2
50、.会求随机变量函数的数学期望.比照:无变化五、大数定律和中心极限定理考试内容切 比 雪 夫(C h e b ys h e v)不等式切 比 雪 夫 大 数 定 律 伯 努 利(B e r n o u l l i)大 数 定 律 辛钦(K h i n c h i n e)大数定律棣莫弗-拉普拉斯(D e Mo i v r e-L a p 1 a c e)定理 列维-林德伯格(L e v y-L i n d b e r g)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3 .了解棣莫弗-拉普拉斯定理(二项分布以正态分