《2020年四川攀枝花中考数学真题(含答案).docx》由会员分享,可在线阅读,更多相关《2020年四川攀枝花中考数学真题(含答案).docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、年寒窗苦读日,只盼金榜题名时,祝你考试拿高分,鲤鱼跳龙门!加油!2020年四川攀枝花中考数学真题及答案一、选择题:本大题共10小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的1(3分)3的相反数是()A3B3CD2(3分)下列事件中,为必然事件的是()A明天要下雨B|a|0C21D打开电视机,它正在播广告3(3分)如图,平行线AB、CD被直线EF所截,过点B作BGEF于点G,已知150,则B()A20B30C40D504(3分)下列式子中正确的是()Aa2a3a5B(a)1aC(3a)23a2Da3+2a33a35(3分)若关于x的方程x2xm0没有实数根,则m的值
2、可以为()A1BC0D16(3分)下列说法中正确的是()A0.09的平方根是0.3B4C0的立方根是0D1的立方根是17(3分)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019nCoV该病毒的直径在0.00000008米0.000000012米,将0.000000012用科学记数法表示为a10n的形式,则n为()A8B7C7D88(3分)实数a、b在数轴上的位置如图所示,化简的结果是()A2B0C2aD2b9(3分)如图,直径AB6的半圆,绕B点顺时针旋转30,此时点A到了点A,
3、则图中阴影部分的面积是()ABCD310(3分)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是(A两人出发1小时后相遇B赵明阳跑步的速度为8km/hC王浩月到达目的地时两人相距10kmD王浩月比赵明阳提前1.5h到目的地二、填空题:本大题共6小题,每小题4分,共24分11(4分)sin60 12(4分)因式分解:aab2 13(4分)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM课程兴趣小组的人数为120人
4、,则该校参加各兴趣小组的学生共有 人14(4分)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元若少于40人时,一个团队至少要有 人进公园,买40张门票反而合算15(4分)如图,已知锐角三角形ABC内接于半径为2的O,ODBC于点D,BAC60,则OD 16(4分)如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH给出下列结论:AFDE;DG;HDBG;ABGDHF其中正确的结论有 (请填上所有正确结论的序号)三、解答题:本大题共7小题,共66分解答应写出文字说明、证明过程或演算步骤17已知x3,将下面代数式先化
5、简,再求值(x1)2+(x+2)(x2)+(x3)(x1)18课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?19三角形三条边上的中线交于一点,这个点叫三角形的重心如图G是ABC的重心求证:AD3GD20如图,过直线ykx上一点P作PDx轴于点D,线段PD交函数y(x0)的图象于点C,点C为线段PD的中点,点C关于直线yx的对称点C的坐标为(1,3)(1)求k、m的值;(2)求直线ykx与函数y(x0)图象的交点坐标;(3)直接写出不等式kx(x0)的解集21刘雨泽和黎昕两位同学玩抽数字游戏五张卡片上分别写有2、4、6、8、x这
6、五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P(抽到数字4的卡片)(1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率22如图,开口向下的抛物线与x轴交于点A(1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值23实验学校某班开展数学“综
7、合与实践”测量活动有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度i1:0.75,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的
8、影子长为100 cm,则高圆柱的高度为多少cm?参考答案与试题解析一、选择题:1 A2 B3 C4 D5 A6 C7 A8 A9 D10C二、填空题:11 12a(1+b)(1b)13 60014 3315 116三、解答题:17.解:(x1)2+(x+2)(x2)+(x3)(x1)x2+12x+x24+x2x3x+33x26x将x3代入,原式2718918解:设这些学生共有x人,根据题意得,解得x48答:这些学生共有48人19证明:连接DE,点G是ABC的重心,点E和点D分别是AB和BC的中点,DE是ABC的中位线,DEAC且DEAC,DEGACG,AD3DG,即AD3GD20解:(1)C的
9、坐标为(1,3),代入y(x0)中,得:m133,C和C关于直线yx对称,点C的坐标为(3,1),点C为PD中点,点P(3,2),将点P代入ykx,解得:k;k和m的值分别为:3,;(2)联立:,得:x2+x60,解得:x12,x23(舍),直线ykx与函数y(x0)图象的交点坐标为(2,);(3)两个函数的交点为:(2,),由图象可知:当0x时,反比例函数图象在一次函数图象上面,不等式(x0)的解集为:0x21解:(1)2、4、6、8、x这五个数字中,P(抽到数字4的卡片),则数字4的卡片有2张,即x4,五个数字分别为2、4、4、6、8,则众数为:4;(2)不同,理由是:原来五个数字的中位数
10、为:4,抽走数字2后,剩余数字为4、4、6、8,则中位数为:5,所以前后两次的中位数不一样;根据题意画树状图如下:可得共有16种等可能的结果,其中两次都抽到数字4的情况有4种,则黎昕两次都抽到数字4的概率为:22解:(1)A(1,0),B(2,0),C(0,4),设抛物线表达式为:ya(x+1)(x2),将C代入得:42a,解得:a2,该抛物线的解析式为:y2(x+1)(x2)2x2+2x+4;(2)连接OP,设点P坐标为(m,2m2+2m+4),m0,A(1,0),B(2,0),C(0,4),可得:OA1,OC4,OB2,SS四边形CABPSOAC+SOCP+SOPB144m2(2m2+2m
11、+4)2m2+4m+62(m1)2+8,当m1时,S最大,最大值为823解:(1)设王诗嬑的影长为xcm,由题意可得:,解得:x120,经检验:x120是分式方程的解,王诗嬑的的影子长为120cm;(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,而横截面与地面垂直,高圆柱也与地面垂直,高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB为高圆柱,AF为太阳光,CDE为斜坡,CF为圆柱在斜坡上的影子,过点F作FGCE于点G,由题意可得:BC100,CF100,斜坡坡度i1:0.75,设FG4m,CG3m,在CFG中,(4m)2+(3m)21002,解得:m20,CG60,FG80,BGBC+CG160,过点F作FHAB于点H,同一时刻,90cm矮圆柱的影子落在地面上,其长为72cm,FGBE,ABBE,FHAB,可知四边形HBGF为矩形,AH200,ABAH+BHAH+FG200+80280,故高圆柱的高度为280cm