《教师资格之中学数学学科知识与教学能力题库【精品】.docx》由会员分享,可在线阅读,更多相关《教师资格之中学数学学科知识与教学能力题库【精品】.docx(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、教师资格之中学数学学科知识与教学能力题库【精品】第一部分 单选题(50题)1、日本学者Tonegawa最初证明BCR在形成过程中( )A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】: D 2、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,下面表述中不适合在教学中培养学生创新意识的是( )。A.发现和提出问题B.寻求解决问题的不同策略C.规范数学书写D.探索结论的新应用【答案】: C 3、中学数学的( )是沟通教学理论与教学实践的中介与桥梁,是体现教学理论,指导教学实践的“策略体系”和“便于操作的实施程序”。A.教学标准B.
2、教学大纲C.教学策略D.教学模式【答案】: D 4、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 5、变性IgG刺激机体产生类风湿因子A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】: B 6、( )著有几何原本。A.阿基米德B.欧几里得C.泰勒斯D.祖冲之【答案】: B 7、关于PT测定下列说法错误的是A.PT测定是反映外源凝血系统最常用的筛选试验B.口服避孕药可使PT延长C.PT测定时0.109mol/L枸橼酸钠与血液的比例是1:9D.PT的参考值为1114秒,超过正常3秒为异常E.肝脏疾病及维生
3、素K缺乏症时PT延长【答案】: B 8、特发性血小板减少性紫癜的原因主要是A.DICB.遗传性血小板功能异常C.抗血小板自身抗体D.血小板第3因子缺乏E.血小板生成减少【答案】: C 9、普通高中数学课程标准(2017年版)指出高中数学课程分为哪几种课程?( )A.必修课程、选修课程B.必修课程、选择性必修课程、选修课程C.选修课程、选择性必修课程D.必修课程、选择性必修课程【答案】: B 10、动物免疫中最常用的佐剂是A.卡介苗B.明矾C.弗氏佐剂D.脂多糖E.吐温-20【答案】: C 11、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: A 1
4、2、出生后,人类的造血干细胞的主要来源是A.胸腺B.骨髓C.淋巴结D.卵黄囊E.肝脏【答案】: B 13、AT-抗原测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】: C 14、内源凝血途径的始动因子是下列哪一个A.B.C.因子D.E.【答案】: D 15、数学的三个基本思想不包括()。A.建模B.抽象C.猜想D.推理【答案】: C 16、与意大利传教士利玛窦共同翻译了几何原本( 卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】: A 17、下列哪项有关尿含铁血黄素试验的说法,正确的是( )A.是慢性血管内溶血的有力证据B
5、.含铁血黄素内主要为二价铁C.急性溶血者尿中始终为阴性D.经肝细胞分解为含铁血黄素E.阴性时能排除血管内溶血【答案】: A 18、男性,35岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下2cm,脾肋下1cm,浅表淋巴结未及。血象:RBC23010A.慢性再生障碍性贫血B.巨幼细胞性贫血C.骨髓增生异常综合征D.缺铁性贫血E.急性粒细胞白血病【答案】: C 19、某女,30岁,乏力,四肢散在瘀斑,肝脾不大,血红蛋白45g/L,红细胞1.0610A.粒细胞减少症B.AAC.巨幼红细胞贫血D.急性白血病E.珠蛋白生成障碍性贫血【答案】: B 20、甲乙两位棋手通过五局三胜制比赛争夺 1000员奖金
6、,前三局比赛结果为甲二胜一负,现因故停止比赛,设在每局比赛中, 甲乙获胜的概率都是1/2,如果按照甲乙最终获胜的概率大小分配奖金,甲应得奖金为()A.500 元B.600 元C.666 元D.750 元【答案】: D 21、正常人外周血经PHA刺激后,其T细胞转化率是A.1030B.7090C.5070D.6080E.3050【答案】: D 22、祖冲之的代表作是( )。A.海岛算经B.数书九章C.微积分D.缀术【答案】: D 23、重症肌无力在损伤机制上属于( )A.细胞免疫功能缺陷B.型超敏反应C.体液免疫功能低下D.巨噬细胞缺陷E.NK细胞活性低下【答案】: B 24、义务教育数学课程标
7、准(2011年版)提出,“数感”感悟的对象是( )。A.数与量、数量关系、口算B.数与量、数量关系、笔算C.数与量、数量关系、简便运算D.数与量、数量关系、运算结果估计【答案】: D 25、恶性淋巴瘤是发生在人体哪个部位的恶性疾病A.淋巴结和淋巴组织B.骨髓C.造血器官D.肝脏E.淋巴细胞系统【答案】: A 26、血浆游离Hb的正常参考范围是( )A.15mg/dlB.510mg/dlC.1015mg/dlD.1520mg/dlE.2025mg/dl【答案】: A 27、CD4A.50/lB.100/lC.200/lD.500/lE.1000/l【答案】: C 28、内、外源性凝血系统形成凝血
8、活酶时,都需要的因子是A.因子B.因子C.因子D.因子E.因子【答案】: D 29、血小板生存期缩短见于下列哪种疾病A.维生素K缺乏症B.原发性血小板减少性紫癜C.蒙特利尔血小板综合征D.血友病E.蚕豆病【答案】: B 30、免疫球蛋白含量按由多到少的顺序为A.IgG,IgM,IgD,IgE,IgAB.IgG,IgA,IgM,lgD,IgEC.lgG,IgD,lgA,IgE,IgMD.IgD,IgM,IgG,IgE,IgAE.IgG,IgM,IgD,IgA,IgE【答案】: B 31、“矩形”和“菱形”概念之间的关系是()。 A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】: B 32
9、、患者发热,巨脾,白细胞2610A.急性粒细胞白血病B.急性淋巴细胞白血病C.慢性粒细胞白血病D.嗜碱性粒细胞白血病E.以上都对【答案】: B 33、中学数学的( )是沟通教学理论与教学实践的中介与桥梁,是体现教学理论,指导教学实践的“策略体系”和“便于操作的实施程序”。A.教学标准B.教学大纲C.教学策略D.教学模式【答案】: D 34、骨髓涂片中见异常幼稚细胞占40%,这些细胞的化学染色结果分别是:POX(-),SB(-),AS-D-NCE(-),-NBE(+),且不被NaF抑制,下列最佳选择是A.急性单核细胞性白血病B.组织细胞性白血病C.急性粒细胞性白血病D.急性早幼粒白血病E.粒-单
10、细胞性白血病【答案】: B 35、下列关于椭圆的叙述: 平面内到两个定点的距离之和等于常数的动点轨迹是椭圆; 平面内到定直线和直线外的定点距离之比为大于 1 的常数的动点轨迹是椭圆; 从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点; 平面与圆柱面的截面是椭圆。 正确的个数是( )A.0B.1C.2D.3【答案】: C 36、血小板聚集诱导剂是A.血栓收缩蛋白B.ADP、血栓烷AC.D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: B 37、属于型变态反应的疾病是A.类风湿关节炎B.强直性脊柱炎C.新生儿溶血症D.血清过敏性休克E.接触性皮炎【答案】: A 3
11、8、义务教育数学课程标准(2011年版)提出,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和( )A.探索性学习B.合作交流C.模型思想D.综合与实践【答案】: C 39、设 a,b 为非零向量,下列命题正确的是( )(易错) (1)ab 垂直于 a;(2)ab 垂直于 b;(3)ab 平行于 a;(4)ab 平行于 b。 正确的个数是( )A.0 个B.1 个C.3 个【答案】: C 40、“三角形内角和180 ”,其判断的形式是( ).A.全称肯定判断B.全称否定判断C.特称肯定判断D.特称否定判断【答案】: A 41、成熟红细胞的异常形态与疾病的
12、关系,下列哪项不正确( )A.点彩红细胞提示铅中毒B.棘形红细胞提示脂蛋白缺乏症C.半月形红细胞提示疟疾D.镰形红细胞提示HbF增高E.红细胞缗钱状形成提示高纤维蛋白原血症【答案】: D 42、下列哪种说法符合多发性骨髓瘤特征A.常有淋巴结肿大B.常伴有肾功能异常C.外周血中骨髓瘤细胞增多D.小于40岁患者也较易见E.外周血中淋巴细胞明显增多【答案】: B 43、细胞介导免疫的效应细胞是A.TD细胞B.Th细胞C.Tc细胞D.NK细胞E.Ts细胞【答案】: C 44、设 A 为 n 阶方阵,B 是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。A.|A|=|B|B.|A|B|C
13、.若|A|=0,则-定有|B|=0D.若|A|0,则-定有|B|0【答案】: C 45、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】: C 46、先天性无丙球蛋白血症综合征是A.原发性T细胞免疫缺陷B.原发性B细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性免疫缺陷【答案】: B 47、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论
14、的推理【答案】: A 48、皮内注射DNP引起的DTH反应明显降低是因为( )A.接受抗组胺的治疗B.接受大量X线照射C.接受抗中性粒细胞血清治疗D.脾脏切除E.补体水平下降【答案】: B 49、函数f(x)在a,b上黎曼可积的必要条件是f(x)在a,b上( )。A.可微B.连续C.不连续点个数有限D.有界【答案】: D 50、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定
15、【答案】: A 第二部分 多选题(50题)1、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】: A 2、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 3、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位
16、线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10分)【答案】:(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰
17、富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度
18、来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。 4、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过
19、的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8分)(2)确定“弧度制”的教学目标和教学重难点;(10分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)【答案】: 5、以普通高中课程标准实验教科书数学1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)【答案】: 6
20、、肝素酶存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: D 7、血小板第4因子(PFA.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: C 8、5-HT存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: B 9、再次免疫应答的主要抗体是A.IgGB.IgAC.IgMD.IgE.IgD【答案】: A 10、儿茶酚胺是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】: D 11、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革
21、新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两
22、个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】: 12、-血小板球蛋白(-TG)存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: C 13、义务教育数学课程标准(2011年版)附录中给出了两个例子:例1.计算1515,2525,9595,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出
23、问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】:本题主要考查考生对于新授课教学设计的能力。 14、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】:本题主要考查合情推理与演绎推理的概念及关系。 15、数学教育家弗赖登塔尔(Han
24、s.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】:本题主要考查对“数学化”的理解。 16、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: A 17、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里
25、,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48172)2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17;2x+4y=48。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算
26、法的共同点。(10分)【答案】:(1)解法一所体现的算法是:S1假设没有小兔则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)2;S5小鸡的只数为n-(m-2n)2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。 18、5
27、-HT存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: B 19、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法
28、法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】:本题考查考生对基本数学思想方法的掌握及应用。 20、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(
29、至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。 21、义务教育教学课程标准(2011年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12分)【答案】:本题主要以初中数学教学中的重要内容之一“平
30、行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三
31、个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理
32、,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。 22、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】:(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的
33、加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。 23、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长
34、率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你
35、能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】: 24、 抛掷两粒正方体骰子(每个面上的点数分别为1, 2, . 6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()A.5/36B.1/9C.1/12D.1/18【答案】: B 25、细胞膜型Ig合成中恒定区基因所连接的外显子是( )A.CB.SC.MCD.E.C【答案】: C 26、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪
36、些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】:本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,
37、否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性 27、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定【答案】: A 28、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度
38、的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8分)(2)确定“弧度制”的教学目标和教学重难点;(10分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)【答案】: 29、血小板第4因子(PFA.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: C 30、下面是某位老师引
39、入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28,l月份的平均气温是零下3,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28减去零下3,得到的答案是31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28,我们常说成28,可用28表示,但是零下3不能说成3呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c。这时,零下3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】:(1)在这段教
40、学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反
41、映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。 31、NO是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】: B 32、人体内最不稳定的凝血因子是A.因子B.因子C.因子D.因子E.因子【答案】: B 33、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾
42、股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】:本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。 34、日本学者Tonegawa最初证明BCR在形成过程中( )A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】: D 35、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】: 36、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】:本题主要考查合情推理与演绎推理的概念及关系。 37、日本学者Tonegawa最初证明BCR在形成过程中( )A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】: D 38、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 39、下面给出“变量与函数”一节的教学片段