《教师资格之中学数学学科知识与教学能力题库题库【精选题】.docx》由会员分享,可在线阅读,更多相关《教师资格之中学数学学科知识与教学能力题库题库【精选题】.docx(46页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、教师资格之中学数学学科知识与教学能力题库题库【精选题】第一部分 单选题(50题)1、粒细胞功能中具有共性的是( )A.调理作用B.黏附作用C.吞噬作用D.杀菌作用E.中和作用【答案】: C 2、疑似患有免疫增殖病的初诊应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】: D 3、设 A 为 n 阶方阵,B 是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。A.|A|=|B|B.|A|B|C.若|A|=0,则-定有|B|=0D.若|A|0,则-定有|B|0【答案】: C 4、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反
2、应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】: A 5、下列哪些不是初中数学课程的核心概念()。A.数感B.空间观念C.数据处理D.推理能力【答案】: C 6、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】: C 7、先天性无丙球蛋白血症综合征是A.原发性T细胞免疫缺陷B.原发性B细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性免疫缺陷【答案】: B 8、经台盼兰染色后,活细
3、胞呈A.蓝色B.不着色C.紫色D.红色E.绿色【答案】: B 9、对高中数学的评价,下列说法错误的是( )。A.重视对学生数学学习过程的评价B.正确评价学生的数学基础知识和基本技能C.重视对学生能力的评价D.实施促进学生发展的单一化评价【答案】: D 10、男性,30岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且HIV筛查试验为阳性结果。其确诊的试验方法选用A.ELISA法B.免疫扩散法C.免疫比浊法D.免疫印迹法E.化学发光法【答案】: D 11、正常人外周血经PHA刺激后,其T细胞转化率是A.1030B.7090C.5070D.6080E.305
4、0【答案】: D 12、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: A 13、我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。A.贾宪B.刘徽C.朱世杰D.秦九韶【答案】: D 14、浆细胞性骨髓瘤的诊断要点是A.骨髓浆细胞增多30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】: A 15、“数学是一种文化体系。”这是数学家( )于1981年提出的。A.华罗庚B.柯朗C.怀尔德D.王见定【答案】: C 16、义务教育阶段数学课程目标分为总体目标和学段目标,从()等几个方面加以阐述。()。A.
5、B.C.D.【答案】: C 17、典型的T细胞缺陷型疾病半甲状腺功能低下的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】: B 18、A.淋巴细胞B.成熟红细胞C.胎盘滋养层细胞D.上皮细胞E.神经细胞【答案】: A 19、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,下面表述中不适合在教学中培养学生创新意识的是( )。A.发现和提出问题B.寻求解决问题的不同策略C.规范数学书写D.探索结论的新应用【答案】: C 20、下列关于反证法的认识,错误的是( ).A.反证法是一种间接证明命题的方法B
6、.反证法是逻辑依据之一是排中律C.反证法的逻辑依据之一是矛盾律D.反证法就是证明一个命题的逆否命题【答案】: D 21、已知向量a与b的夹角为/3,且|a|=1,|b|=2,若m=a+b与n=2a- b互相垂直,则的为( )。A.-2B.-1C.1D.2【答案】: D 22、与意大利传教士利玛窦共同翻译了几何原本( 卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】: A 23、下列内容属于义务教育数学课程标准(2011年版)第三学段“数与式”的是( )。A.B.C.D.【答案】: C 24、患者,女,25岁。因咳嗽、发热7天就诊。查体T37.8,右上肺闻及啰音,胸片示右肺上
7、叶见片状阴影。结核菌素试验:红肿直径大于20mm。该患者可能为A.对结核分枝杆菌无免疫力B.处于结核病恢复期C.处于结核病活动期D.注射过卡介苗E.处于结核分枝杆菌早期感染【答案】: C 25、以下哪些不属于学段目标中情感与态度方面的。()A.感受数学思考过程的合理性。B.感受数学思考过程的条理性和数学结论的确定性。C.获得成功的体验,有学好数学的信心。D.在解决问题过程中,能进行简单的、有条理的思考。【答案】: D 26、抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为( )。A.y=-x2B.y=-x2+1C.y=x2-1D.y=-x2-1【答案】: D 27、新课
8、程标准下数学教学过程的核心要素是( )。A.师生相互沟通和交流B.师生的充分理解和信任C.教师的组织性与原则性D.多种要素的有机结合【答案】: A 28、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。兄弟间器官移植引起排斥反应的物质是A.异种抗原B.自身抗原C.异嗜性抗原D.同种异体抗原E.超抗原【答案】: D 29、提出“一笔画定理”的数学家是( )。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】: C 30、义务教育教学课程标准(2011年版)设定了九条基本事实,下列属于基本事实的是( )。A.两条平行线被一条直线所截,同位角相等B.两平行线间距离相等C.两条平行线被一条直线所截,内错角
9、相等D.两直线被平行线所截,对应线段成比例【答案】: D 31、下列哪一项是恶性组织细胞病的最重要特征A.骨髓涂片见到形态异常的组织细胞B.全血细胞减少C.血涂片找到不典型的单核细胞D.起病急,高热,衰竭和进行性贫血E.以上都不正确【答案】: A 32、证明通常分成直接法和间接法,下列证明方式属于间接法的是( )。A.分析法B.综合法C.反证法D.比较法【答案】: C 33、临床表现为反复发作的皮肤黏膜水肿的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】: C 34、临床有出血症状且APTT延长和PT正常可见于A.痔
10、疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】: C 35、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 36、临床有出血症状且APTT延长和PT正常可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】: C 37、男性,35岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下2cm,脾肋下1cm,浅表淋巴结未及。血象:RBC23010A.铁粒幼细胞性贫血B.溶血性贫血C.巨幼细胞性贫血D.缺铁性贫血E.环形铁粒幼细胞增多的难治性贫血【答案】: D 38、浆细胞性骨髓瘤的诊断要
11、点是A.骨髓浆细胞增多30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】: A 39、关于抗碱血红蛋白的叙述,下列哪项是不正确的A.又称碱变性试验B.珠蛋白生成障碍性贫血时,HbF减少C.用半饱和硫酸铵中止反应D.用540nm波长比色E.测定HbF的抗碱能力【答案】: B 40、男性,35岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下2cm,脾肋下1cm,浅表淋巴结未及。血象:RBC23010A.慢性再生障碍性贫血B.巨幼细胞性贫血C.骨髓增生异常综合征D.缺铁性贫血E.急性粒细胞白血病【答案】: C 41、细胞核均匀着染荧光,有些核仁部位不着色,分裂期细胞染色体可被染色出现
12、荧光的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】: A 42、祖冲之的代表作是( )。A.海岛算经B.数书九章C.微积分D.缀术【答案】: D 43、纤溶酶的生理功能下列哪项是错误的( )A.降解纤维蛋白和纤维蛋白原B.抑制组织纤溶酶原激活物(t-PA)C.水解多种凝血因子D.使谷氨酸纤溶酶转变为赖氨酸纤溶酶E.水解补体【答案】: B 44、典型的T细胞缺陷型疾病半甲状腺功能低下的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】: B 45、数学的三个基本思想不包括()。A.建模B.抽象C.猜想
13、D.推理【答案】: C 46、中性粒细胞碱性磷酸酶(NAP)积分正常参考值为A.140174分B.30130分C.105139分D.71104分E.751分【答案】: B 47、下列选项中,运算结果一定是无理数的是() A.有理数和无理数的和B.有理数与有理数的差C.无理数和无理数的和D.无理数与无理数的差【答案】: A 48、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】: B 49、我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。A.贾宪B.刘徽C.朱世杰D.秦九韶
14、【答案】: D 50、患者,女性,30岁,3年前无明显诱因出现巩膜发黄,全身乏力,常感头昏,皮肤瘙痒,并多次出现酱油色尿。近3个月来,乏力加重,无法正常工作而入院。体格检查发现重度贫血,巩膜黄染,肝肋下2cm,脾平脐,其余未见异常。血常规显示WBC9.010A.肾功能测定B.肝功能测定C.LDH、总胆红素、间接胆红素、血红蛋白尿等测定D.补体测定E.红细胞沉降率测定【答案】: C 第二部分 多选题(50题)1、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】: A 2、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师
15、】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?
16、讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】:本题考查考生对基本数学思想方法的掌握及应用。 3、义务教育数学课程标准(2011年版)附录中给出了两个例子:例1.计算1515,2525,9595,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,
17、实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】:本题主要考查考生对于新授课教学设计的能力。 4、丝氨酸蛋白酶抑制因子是A.血栓收缩蛋白B.ADP、血栓烷AC.D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: C 5、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问
18、:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8分)(2)确定“弧度制”的教学目标和教学重难点;(10分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)【答案】: 6、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的
19、关系。(分)【答案】:本题主要考查合情推理与演绎推理的概念及关系。 7、义务教育教学课程标准(2011年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12分)【答案】:本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学
20、方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验
21、,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证
22、明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。 8、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】
23、第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】:本题考查考生对基本数学思想方法的掌握及应用。 9、NO是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】: B 10、义务教育数学课程标准(2011年版)附录中给出了两个例子:
24、例1.计算1515,2525,9595,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】:本
25、题主要考查考生对于新授课教学设计的能力。 11、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今
26、天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】: 12、 抛掷两粒正方体骰子(每个面上的点数分别为1, 2, . 6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()A.5/36B.1/9C.1/12D.1/18【答案】: B 13、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基
27、本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】: 14、儿茶酚胺是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】: D 15、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 16、-血小板球蛋白(-TG)存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: C 17、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度
28、分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定【答案】: A 18、肝素酶存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: D 19、创立解析几何的主要数学家是( ).A.笛卡尔,费马B.笛卡尔,拉格朗日C.莱布尼茨,牛顿D.柯西,牛顿【答案】: A 20、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】:本题主要考查函数单调性的知识
29、,考生对中学课程内容的掌握以及考生的教学设计能力。 21、丝氨酸蛋白酶抑制因子是A.血栓收缩蛋白B.ADP、血栓烷AC.D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: C 22、义务教育阶段的数学课程应该具有( )。 A.基础性、普及性、发展性B.实践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】: A 23、下列语句是命题的是( )。A.B.C.D.【答案】: D 24、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】:本题考查数学
30、文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。 25、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】:本题主要考查对“数学化”的理解。 26、患者,女,25岁。因咳嗽、发热7天就诊。
31、查体T37.8,右上肺闻及啰音,胸片示右肺上叶见片状阴影。结核菌素试验:红肿直径大于20mm。该患者可能为A.对结核分枝杆菌无免疫力B.处于结核病恢复期C.处于结核病活动期D.注射过卡介苗E.处于结核分枝杆菌早期感染【答案】: C 27、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性【答案】:本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个
32、严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严
33、谨性与量力性相结合”的教学原则。 28、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】: A 29、下面是某位老师引入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28,l月份的平均气温是零下3,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28减去零下3,得到的答案是31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28,我们常说成28,可用28表示,但是零下3不能说成3呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c。这时,零下3就可写成-3,-3就是
34、负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】:(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。
35、学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。 30、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: A 31、人体内最不稳定的凝
36、血因子是A.因子B.因子C.因子D.因子E.因子【答案】: B 32、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 33、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和
37、中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10分)【答案】:(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化
38、、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果
39、角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。 34、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 35、义务教育教学课程标准(2011年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对
40、角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12分)【答案】:本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与
41、方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的
42、促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。 36、内、外源性凝血系统形成凝血活酶时,都需要的因子是A.因子B.因子C.因子D.因子E.因子【答案】: D 37、日本学者Tonegawa最初证明BCR在形成过程中( )A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】: D 38、以普通高中课程标准实验教科书数学1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的