《教师资格之中学数学学科知识与教学能力题库(综合卷).docx》由会员分享,可在线阅读,更多相关《教师资格之中学数学学科知识与教学能力题库(综合卷).docx(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、教师资格之中学数学学科知识与教学能力题库(综合卷)第一部分 单选题(50题)1、下列命题不正确的是( )。 A.有理数对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集是有界集【答案】: D 2、最常见的Ig缺陷病是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】: A 3、粒细胞功能中具有共性的是( )A.调理作用B.黏附作用C.吞噬作用D.杀菌作用E.中和作用【答案】: C 4、男性,65岁,手脚麻木伴头晕3个月,并时常有鼻出血。体检:脾肋下30cm,肝肋下15cm。检验:血红蛋白量150g
2、L,血小板数110010A.慢性中性粒细胞白血病B.骨髓增生性疾病C.原发性血小板增多症D.慢性粒细胞白血病E.继发性血小板增多症【答案】: C 5、要定量检测人血清中的生长激素,采用的最佳免疫检测法是( )A.免疫荧光法B.免疫酶标记法C.细胞毒试验D.放射免疫测定法E.补体结合试验【答案】: D 6、疑似患有免疫增殖病,但仅检出少量的M蛋白时应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】: C 7、成熟红细胞的异常形态与疾病的关系,下列哪项不正确( )A.点彩红细胞提示铅中毒B.棘形红细胞提示脂蛋白缺乏症C.半月形红细胞提示疟疾D.镰
3、形红细胞提示HbF增高E.红细胞缗钱状形成提示高纤维蛋白原血症【答案】: D 8、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条a,转动木条b,让学生观察,从而导入新课。这种导入方式属于( )。A.实例导入B.直观导入C.悬念导入D.故事导入【答案】: B 9、下列哪种物质是血小板膜上的纤维蛋白原受体A.GPb/aB.GPIVC.GPVD.GPb-复合物E.GPIa【答案】: A 10、有限小数与无限不循环小数的关系是( )。A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】: A 11、下列不属于血管壁止血功能的是A.局部血管通透性降低B.血小板的激活C.凝血
4、系统的激活D.收缩反应增强E.局部血黏度增加【答案】: A 12、珠蛋白生成障碍性贫血的主要诊断依据是A.粒红比缩小或倒置B.血红蛋白尿C.外周血出现有核红细胞D.血红蛋白电泳异常E.骨髓中幼稚红细胞明显增高【答案】: D 13、男性,65岁,手脚麻木伴头晕3个月,并时常有鼻出血。体检:脾肋下30cm,肝肋下15cm。检验:血红蛋白量150gL,血小板数110010A.慢性中性粒细胞白血病B.骨髓增生性疾病C.原发性血小板增多症D.慢性粒细胞白血病E.继发性血小板增多症【答案】: C 14、血浆游离Hb的正常参考范围是( )A.15mg/dlB.510mg/dlC.1015mg/dlD.152
5、0mg/dlE.2025mg/dl【答案】: A 15、高中数学课程是义务教育阶段后普通高级中学的主要课程,具有( )。A.基础性、选择性和发展性B.基础性、选择性和实践性C.基础性、实践性和创新性D.基础性、选择性和普适性【答案】: A 16、血小板生存期缩短见于下列哪种疾病A.维生素K缺乏症B.原发性血小板减少性紫癜C.蒙特利尔血小板综合征D.血友病E.蚕豆病【答案】: B 17、下列哪种疾病做PAS染色时红系呈阳性反应A.再生障碍性贫血B.巨幼红细胞性贫血C.红白血病D.溶血性贫血E.巨幼细胞性贫血【答案】: C 18、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型
6、超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】: B 19、高中数学学习评价关注学生知识技能的掌握,更关注数学学科( )的形式和发展,制定学科合理的学业质量要求,促进学生在不同学习阶段数学学科核心素养水平的达成。A.核心素养B.数学能力C.数学方法D.数学技能【答案】: A 20、MTT比色法用于判断淋巴细胞增殖程度的指标是A.刺激指数(SI)B.着色细胞数C.每分钟脉冲数D.着色细胞数与所计数的总细胞数之比E.试验孔OD值【答案】: A 21、贫血患者,轻度黄疸,肝肋下2cm。检验:血红蛋白70g/L,网织红细胞8%;血清铁14.32mol/L(80g/dl),ALT正常
7、;Coombs试验(+)。诊断首先考虑为A.黄疸型肝炎B.早期肝硬化C.缺铁性贫血D.自身免疫性溶血性贫血E.肝炎合并继发性贫血【答案】: D 22、下列描述的四种教学场景中,使用的教学方法为演算法的是( )。A.课堂上老师运用实物直观教具将教学内容生动形象地展示给学生B.课堂上老师运用口头语言,辅以表情姿态向学生传授知识C.课堂上在老师的指导下,学生运用所学知识完成课后练习D.课堂上老师向学生提出问题,并要求学生回答,以对话方式探索新知识【答案】: C 23、提出“一笔画定理”的数学家是( )。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】: C 24、数学发展史上曾经发生过三次危机,触发第三
8、次危机的事件是()。A.无理数的发现B.微积分的创立C.罗素悖论D.数学命题的机器证明【答案】: C 25、患者男性,60岁,贫血伴逐渐加剧的腰痛半年余,肝、脾不大,Hb85g/L,白细胞3.610A.原发性巨球蛋白血症B.浆细胞白血病C.多发性骨髓瘤D.尿毒症E.急淋【答案】: C 26、典型的T细胞缺陷型疾病半甲状腺功能低下的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】: B 27、义务教育数学课程标准(2011年版)提出的课程标准包括,通过义务教育阶段的数学学习,学生能养成良好的学习习惯,良好的学习习惯指勤奋
9、、独立思考、合作交流和( )。A.反思质疑B.坚持真理C.修正错误D.严谨求是【答案】: A 28、免疫学法包括A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】: B 29、下列关于数学思想的说法中,错误的一项是( )A.数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动产生的结果B.数学思想是要在现实世界中找到具有直观意义的现实原型C.数学思想是对数学事实与数学理论概念、定理、公式、法则、方法的本质认识D.数学思想是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观念【答案】: B 30、骨髓细胞形态学检查的禁忌证是A.脂质
10、沉积病B.肝硬化患者C.脾功能亢进D.晚期妊娠的孕妇E.化疗后肿瘤患者【答案】: D 31、-血小板球蛋白(-TG)存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: C 32、原发性肝细胞癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】: A 33、患者,男,51岁。尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。肿瘤病人的机体免疫状态A.免疫防御过高B.免疫监视低下C.免疫自稳失调D.免疫耐受增强E.免疫
11、防御低下【答案】: B 34、荧光着色主要在核仁区,分裂期细胞染色体无荧光着色的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】: D 35、普通高中数学课程标准(2017年版)指出高中数学课程分为哪几种课程?( )A.必修课程、选修课程B.必修课程、选择性必修课程、选修课程C.选修课程、选择性必修课程D.必修课程、选择性必修课程【答案】: B 36、男性,29岁,发热半个月。体检:两侧颈部淋巴结肿大(约3cm4cm),肝肋下2cm,脾肋下25cm,胸骨压痛,CT显示后腹膜淋巴结肿大。检验:血红蛋白量85gL,白细胞数3510A.多发性骨髓瘤B.急性白血病C.恶性淋巴瘤D.传
12、染性单核细胞增多症E.骨髓增生异常综合征【答案】: C 37、怀疑为血友病,首选的筛检试验是A.PTB.因子、C.APTTD.FA.FA.CaE.因子、【答案】: C 38、下列哪种疾病血浆高铁血红素白蛋白试验阴性A.肝外梗阻性黄疸B.肿瘤C.蚕豆病D.感染E.阵发性睡眠性血红蛋白尿【答案】: B 39、细胞因子诱导产物测定法目前最常用于测定A.IL-1B.INFC.TNFD.IL-6E.IL-8【答案】: A 40、A.淋巴细胞B.成熟红细胞C.胎盘滋养层细胞D.上皮细胞E.神经细胞【答案】: A 41、型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗
13、原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】: A 42、患者发热,巨脾,白细胞2610A.急性粒细胞白血病B.急性淋巴细胞白血病C.慢性粒细胞白血病D.嗜碱性粒细胞白血病E.以上都对【答案】: B 43、义务教育数学课程标准(2011 年版)从四个方面阐述了课程目标,这四个目标是( )。A.知识技能、数学思考、问题解决、情感态度B.基础知识、基本技能、问题解决、情感态度C.基础知识、基本技能、数学思考、情感态度D.知识技能、问题解决、数学创新、情感态度【答案】: A 44、设 n 阶方阵 M 的秩 r(M)=rn,则它的 n 个行向量中( ). A.任意一个行向量均可由其他 r 个
14、行向量线性表示B.任意 r 个行向量均可组成极大线性无关组C.任意 r 个行向量均线性无关D.必有 r 个行向量线性无关【答案】: D 45、下列叙述哪项是正确的( )A.多发性骨髓瘤外周血可检到瘤细胞B.慢性粒细胞白血病外周血可检到幼稚粒细胞C.淋巴肉瘤细胞常在早期出现在外周血中D.急性粒细胞白血病外周血可找到原始粒细胞E.急性淋巴细胞白血病外周血中可找到涂抹细胞【答案】: B 46、实验室常用的校准品属于A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品【答案】: C 47、AT-抗原测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以
15、上都是【答案】: C 48、下列内容属于义务教育数学课程标准(2011年版)第三学段“数与式”的是( )。A.B.C.D.【答案】: C 49、关于补体的理化特性描述错误的是A.存在于新鲜血清及组织液中具有酶样活性的球蛋白B.补体性质不稳定,易受各种理化因素的影响C.在010下活性只保持34天D.正常血清中含量最高的补体成分为C2E.补体大多数属于球蛋白【答案】: D 50、恶性淋巴瘤是发生在人体哪个部位的恶性疾病A.淋巴结和淋巴组织B.骨髓C.造血器官D.肝脏E.淋巴细胞系统【答案】: A 第二部分 多选题(50题)1、义务教育阶段的数学课程应该具有( )。 A.基础性、普及性、发展性B.实
16、践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】: A 2、内、外源性凝血系统形成凝血活酶时,都需要的因子是A.因子B.因子C.因子D.因子E.因子【答案】: D 3、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】:本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内
17、涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“
18、负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。 4、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。 5、患者,女,35岁。发热、咽痛1天。查
19、体:扁桃体度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为A.肾小管性蛋白尿B.肾小球性蛋白尿C.混合性蛋白尿D.溢出性蛋白尿E.生理性蛋白尿【答案】: B 6、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】: A 7、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】: 8、案例:面对课堂上出现的各种各样的意外生成,教师如
20、何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的
21、教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10分)【答案】:(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学
22、生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成
23、,使之为我们的数学教学服务,提高课堂教学的效果。 9、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 10、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽
24、象概括”能力的作用。【答案】:本题主要考查对“数学化”的理解。 11、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】:本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理
25、解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性 12、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么
26、(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】:(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两
27、数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。 13、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】: A 14、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”
28、过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】:本题主要考查对“数学化”的理解。 15、丝氨酸蛋白酶抑制因子是A.血栓收缩蛋白B.ADP、血栓烷AC.D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: C 16、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性【答案】:本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个
29、数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运
30、算法则,从而体现“严谨性与量力性相结合”的教学原则。 17、日本学者Tonegawa最初证明BCR在形成过程中( )A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】: D 18、肝素酶存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: D 19、患者,女,35岁。发热、咽痛1天。查体:扁桃体度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为A.肾小管性蛋白尿B.肾小球性蛋白尿C.混合性蛋白尿D.溢出性蛋白
31、尿E.生理性蛋白尿【答案】: B 20、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 21、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】: 22、义务教育教学课程标准(2011年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明
32、的教学流程,使学生领悟证明过程中的教学思想方法。(12分)【答案】:本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法
33、目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学
34、习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。 23、 抛掷两粒正方体骰子(每个面上的点数分别为1, 2, . 6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()A.5/36B.1/9C.1/12D.1/18【答案】: B 24、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】:
35、A 25、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】:本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。 26、再次免疫应答的主要抗体是A.IgGB.IgAC.IgMD.IgE.IgD【答案】: A 27、血小板第4因子(PFA.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: C 28、肝素酶存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: D 29、NO是A.激活血小板物质B.舒血管物质C.调节血液凝固物
36、质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】: B 30、 抛掷两粒正方体骰子(每个面上的点数分别为1, 2, . 6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()A.5/36B.1/9C.1/12D.1/18【答案】: B 31、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定【答案】: A 32、下面是某位老师引入“负数”概念的教学
37、片段。师:我们当地7月份的平均气温是零上28,l月份的平均气温是零下3,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28减去零下3,得到的答案是31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28,我们常说成28,可用28表示,但是零下3不能说成3呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c。这时,零下3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】:(1)在这段教学中,教师没有将负数
38、的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让
39、太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。 33、外周免疫器官包括A.脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、淋巴结C.淋巴结、骨髓、脾脏D.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、【答案】: A 34、日本学者Tonegawa最初证明BCR在形成过程中( )A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随
40、机重排E.类别转换【答案】: D 35、义务教育数学课程标准(2011年版)附录中给出了两个例子:例1.计算1515,2525,9595,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问
41、题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】:本题主要考查考生对于新授课教学设计的能力。 36、ATP存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: A 37、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用
42、;(8分)(2)确定“弧度制”的教学目标和教学重难点;(10分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)【答案】: 38、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8分)(2)确定“弧度制”的教学目标和教学重难点;(10分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)【答案】: 39、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 40、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】:本节课的教学设计对于知识技能教学属于