《资料挖掘在客户关系管理中的应用(2)46272.pptx》由会员分享,可在线阅读,更多相关《资料挖掘在客户关系管理中的应用(2)46272.pptx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数据挖掘在客户关系管理中的应用 议程 客户关系管理 为什么要进行客户关系管理 客户关系管理的内容 数据挖掘在客户关系管理中的应用 什么是数据挖掘 数据挖掘的典型应用 SPSS Clementine 针对CRM 的数据挖掘解决方案SPSS 数据挖掘方案简介Clementine 中的CRM 数据挖掘模板议程 客户关系管理 为什么要进行客户关系管理 客户关系管理的内容 数据挖掘在客户关系管理中的应用 什么是数据挖掘 数据挖掘的典型应用 SPSS Clementine 针对CRM 的数据挖掘解决方案SPSS 数据挖掘方案简介Clementine 中的CRM 数据挖掘模板为什么要进行客户关系管理 客户关
2、系管理的提出是伴随着产品极大丰富、买方市场形成而产生的从“客户得到的就是他们所想要的”到“客户得到他们所想要的”的演变 CRM的核心是“了解他们,倾听他们”CRM的目标可以概括为“吸引潜在客户进入,提高现有客户满意度和忠诚度,降低客户流失”客户关系管理(CRM)的两个层面操作型CRM:方便与客户交流,简化操作流程 分析型CRM:了解客户有很多因素影响着客户行为 从而改变他们对于企业的价值客户行为 使获得客户的成本更低 减少销售成本 更高的客户创利能力 提高客户的保留度和忠诚度 评估客户的创利能力客户关系管理的好处 信息技术的发展使客户关系管理有了技术上的保证 客户关系管理中的关键性信息技术主要
3、包括:数据库和数据仓库技术 数据挖掘技术信息技术的角色 客户关系管理 为什么要进行客户关系管理 客户关系管理的内容 数据挖掘在客户关系管理中的应用 什么是数据挖掘 数据挖掘的典型应用 SPSS Clementine 针对CRM 的数据挖掘解决方案SPSS 数据挖掘方案简介Clementine 中的CRM 数据挖掘模板议程 通过采用自动或半自动的手段,在海量数据中发现有意义的行为和规则的探测和分析活动。数据挖掘是一门科学,有科学的方法和模型作为基础 数据挖掘又是一门艺术,需要使用者对商业问题的深入理解和模型适用条件深刻的认识什么是数据挖掘数据挖掘描述 预测统计回归关联规则决策树可视化聚类顺序关联
4、汇总神经网络分类数据挖掘的分类 问题描述:预测信用水平是好还是差,银行据此决定是否向客户发放贷款,发放多少 结果描述:(决策树)收入大于5万元/年是 否有无储蓄帐户 是否房主是是否否批准不批准批准数据挖掘的典型结果 金融 问题描述:根据客户信息,预测客户流失可能性 结果描述:(神经网络)输 入流失概率(0.87)输 出男293000元/月神州行130元/月数据挖掘的典型结果 电信 问题描述:如何决定超市中商品的摆放来增加销售额 结果描述:(Web图)数据挖掘的典型结果 零售 问题描述:如何对市场进行细分,使产品满足最有价值客户 结果描述:(Koholen聚类)营销活动回应率数据挖掘的典型结果
5、制造业 问题描述:如何从众多申请经费或者纳税中发现欺诈 结果描述:(回归、神经网络)数据挖掘的典型结果 政府 客户盈利能力;客户保留;客户细分;客户倾向;渠道优化;风险管理;欺诈监测;购物倾向分析;需求预测;价格优化。数据挖掘在客户关系管理中的应用范围 客户关系管理 为什么要进行客户关系管理 客户关系管理的内容 数据挖掘在客户关系管理中的应用 什么是数据挖掘 数据挖掘的典型应用 SPSS Clementine 针对CRM 的数据挖掘解决方案SPSS 数据挖掘方案简介Clementine 中的CRM 数据挖掘模板议程 商业理解 数据理解 数据准备 建立模型 模型评估 模型发布 提供了业界权威的数
6、据挖掘方法论跨行业数据挖掘标准流程(CRISPDM)SPSS 数据挖掘方案简介 提供了界面友好、算法丰富、功能强大的数据挖掘工作平台SPSS ClementineSPSS 数据挖掘方案简介(续)提供了面向行业(问题)的数据挖掘应用模板目前提供以下行业的数据挖掘模板 针对电信行业的数据挖掘模板 针对CRM的数据挖掘模板 针对Web挖掘的数据挖掘模板 犯罪模式甄别模板 欺诈(Fraud)甄别模板SPSS 数据挖掘方案简介(续)商业理解文档部署应用D streams数据理解E streams探测数据准备P streams建模和评估M streams 所有模板都是行业(问题)、方法论CRISPDM和数
7、据挖掘工具Clementine的完美结合SPSS 数据挖掘方案简介(续)3个应用模型|模型1:客户细分和高价值客户的获取 建立并探测客户的价值金字塔 概括细分特性(对获取客户非常有价值)|模型2:营销活动的响应 计算并探测RFM分数 响应率模型的范围:1.RFM;2.预测;3.基于聚类 响应模型部署应用|模型 3:细分迁移和客户流失分析 建立并探测迁移和流失的细分模型 建立迁移和流失模型,部署应用Clementine 中的CRM 数据挖掘模板 CRM数据挖掘模板基于市场营销理论和客户关系管理理论建立 CRM数据挖掘模板中采用的主要理论 客户金字塔理论(pyramid model)客户生命周期价
8、值理论 RFM模型CRM 数据挖掘模板的理论基础客户金字塔理论(pyramid model)时间收入利润损失销售商品或服务 客户关系结束 认知 更少损失更加有效的认知利润 更多的利润更加多的销售额 更加有效的认知 MORE PROFIT利润甚至更多利润更长的客户关系 更加多的销售额客户生命周期价值理论CRM数据挖掘应用模板1-客户价值评估和客户获得图例:数据 数据流交易数据探索性分析客户价值计算按客户价值市场细分客户花费数据交易数据 交易明细 客户资料客户消费卡资料创建客户金字塔客户价值总结 客户信息汇总客户信息客户信息CRM 数据挖掘应用模板-模型1:结构CRM数据挖掘应用模板2营销活动的响
9、应分析图例:数据 数据流RFM 模型交易数据 交易明细客户消费卡资料数据合并产品信息产品明细数据产品数据市场活动数据购买模式数据客户数据RFM 模型结果数据客户回应分析响应概率发布响应预测对响应聚类 RFM 响应购买模式数据客户原始数据CRM 数据挖掘应用模板-模型2:结构CRM数据挖掘应用模板3细分迁移和客户流失分析图例:数据数据流客户价值矩阵客户金字塔数据客户购买模式数据客户数据客户细分迁移分析客户细分迁移数据迁移模型数据准备细分迁移模型发布细分迁移模型客户流失分析迁移模型结果数据客户原始数据迁移模型CRM 数据挖掘应用模板-模型3:结构数据理解,数据探索性分析CRM 数据挖掘应用模板初体验计算客户价值CRM 数据挖掘应用模板初体验(续)描述客户价值分布及随时间变化情况 CRM 数据挖掘应用模板初体验(续)CRM 数据挖掘应用模板初体验(续)全方位的服务 产品 培训 咨询 全球性的公司 与业界领袖的伙伴关系 Siebel Sybase NCR SPSS 提供全方位的服务,帮助您获得成功