《普通高中高三下册数学知识点深度归纳2021.docx》由会员分享,可在线阅读,更多相关《普通高中高三下册数学知识点深度归纳2021.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、普通高中高三下册数学知识点深度归纳2021高三下册数学知识点归纳1(一)导数第一定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量x(x0+x也在该邻域内)时,相应地函数取得增量y=f(x0+x)-f(x0);如果y与x之比当x0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第一定义(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化x(x-x0也在该邻域内)时,相应地函数变化y=f(x)-f(x0);如果y与x之比当x0时极限存在,则称函数y=f(x)在点x0处
2、可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第二定义(三)导函数与导数如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。(四)单调性及其应用1.利用导数研究多项式函数单调性的一般步骤(1)求f(x)(2)确定f(x)在(a,b)内符号(3)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0的解集与定义域的
3、交集的对应区间为增区间;f(x)0的解集与定义域的交集的对应区间为减区间高三下册数学知识点归纳2一、排列1定义(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.2排列数的公式与性质(1)排列数的公式:Amn=n(n-1)(n-2)(n-m+1)特例:当m=n时,Amn=n!=n(n-1)(n-2)321规定:0!=1二、组合1定义(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合(2)从n个不同元素中取
4、出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。2比较与鉴别由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。三、排列组合与二项式定理知识点1.计数原理知识点乘法原理:N=n1n2n3nM(分步)加法原理:N=n1+n2+n3+nM(分类)2.排列(有序)与组
5、合(无序)Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n!Cnm=n!/(n-m)!m!Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1kk!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分
6、类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:分类讨论思想;转化思想;对称思想.4.二项式定理知识点:(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+Cnran-rbr+-+Cnn-1abn-1+Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn主要性质和主要结论:对称性Cnm=Cnn-m二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+Cnr+Cnn=2n奇数项二项式系
7、数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。高三下册数学知识点归纳3轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条
8、件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。一、求动点的轨迹方程的基本步骤。1.建立适当的坐标系,设出动点M的坐标;2.写出点M的集合;3.列出方程=0;4.化简方程为最简形式;5.检验。二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0
9、、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。求动点轨迹方程的一般步骤:建系建立适当的坐标系;设点设轨迹上的任一点P(x,y);列式列出动点p所满足的关系式;代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;证明证明所求方程即为符合条件的动点轨迹方程。