《高二数学期中考试的知识点分析.docx》由会员分享,可在线阅读,更多相关《高二数学期中考试的知识点分析.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学期中考试的知识点分析数学的学习过程中千万不要有心理包袱和顾虑,任何学科也是一样,是一个慢慢学习和积累的过程。但高二数学期中考试的知识点分析1导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0)切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。3.常见函数的导数公式:;。4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函
2、数求字母取值范围,那么不等式恒成立。(2)求极值的步骤:求导数;求方程的根;列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:求的根;把根与区间端点函数值比较,的为值,最小的是最小值。高二数学期中考试的知识点分析21.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:|a|0;a20;(a-b)20(a、bR)a2+b22ab(a、bR,当且仅当a=b时取“=”号)2.不等式的证明(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:
3、作差变形判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.高二数学期中考试的知识点分析3复数的概念:形如a+bi(a,bR)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。复数的表示:复数通常用字母z表示,即z=a+bi(a,bR),这一表示形式叫做复数的代数形式,其中a叫复数
4、的实部,b叫复数的虚部。复数的几何意义:(1)复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、bR)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。复数的模:复数z=a+bi(a、bR)在复平面上对应的点Z(a,
5、b)到原点的距离叫复数的模,记为|Z|,即|Z|=虚数单位i:(1)它的平方等于-1,即i2=-1;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。复数模的性质:复数与实数、虚数、纯虚数及0的关系:对于复数a+bi(a、bR),当且仅当b=0时,复数a+bi(a、bR)是实数a;当b0时,复数z=a+bi叫做虚数;当a=0且b0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。