《物理光学及应用光学(第二版)第五章课件.ppt》由会员分享,可在线阅读,更多相关《物理光学及应用光学(第二版)第五章课件.ppt(143页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 5 章 晶体的感应双折射 第 5 章 晶体的感应双折射 5.1 电光效应电光效应 5.2 声光效应声光效应 5.3 晶体的旋光效应与法拉第效应晶体的旋光效应与法拉第效应 例题例题 第 5 章 晶体的感应双折射 5.1 电电 光光 效效 应应 5.1.1 电光效应的描述电光效应的描述由前面的讨论已知,光在晶体中的传播规律遵从光的电磁理论,利用折射率椭球可以完整而方便地描述晶体折射率在空间各个方向的取值分布。显然,外加电场对晶体光学特性的影响,必然会通过折射率椭球的变化反映出来。因此,可以根据晶体折射率椭球的大小、形状和取向的变化,来研究外电场对晶体光学特性的影响。由空间解析几何理论,描述晶体
2、光学各向异性的折射率椭球在直角坐标系(Ox1x2x3)中的一般形式为第 5 章 晶体的感应双折射(5.1-1)若令(5.1-2)则折射率椭球的表示式可改写为(5.1-3)如果将没有外加电场的晶体折射率椭球记为(5.1-4)外加电场后晶体的感应折射率椭球用(5.1-3)式表示,则外加电场引起折射率椭球的变化,用折射率椭球系数的变化Bij描述将很方便,晶体的感应折射率椭球可表示成第 5 章 晶体的感应双折射 在这里,仅考虑Bij是由外加电场引起的,它应与外加电场有关系。一般情况下,Bij可以表示成Bij=ijkEk+hijpqEpEq+i,j,k,p,q=1,2,3(5.1-6)(5.1-5)上式
3、中,等号右边第一项描述了Bij与Ek呈线性关系,ijk是三阶张量,称为线性电光系数,由这一项所描述的电光效应叫做线性电光效应,或普克尔(Pockels)效应;等号右边第二项描述了Bij与外加电场的二次关系,hijpq是四阶张量,称为二次非线性电光系数,由这一项所描述的电光效应叫作二次电光效应,或克尔(Kerr)效应。第 5 章 晶体的感应双折射 5.1.2 晶体的线性电光效应晶体的线性电光效应1.线性电光系数线性电光系数如上所述,在主轴坐标系中,无外加电场晶体的折射率椭球为(5.1-7)外加电场后,由于线性电光效应,折射率椭球发生了变化,它应表示为一般折射率椭球的形式(5.1-8)第 5 章
4、晶体的感应双折射 根据前面的讨论,折射率椭球的系数Bij实际上是晶体的相对介电常数ij的逆张量,故Bij也是二阶对称张量,有Bij=Bji。因而Bij只有六个独立分量,(5.1-8)式可简化为(5.1-9)将(5.1-9)式与(5.1-7)式进行比较可见,外加电场后,晶体折射率椭球系数Bij的变化为第 5 章 晶体的感应双折射(5.1-10)考虑到Bij是二阶对称张量,将其下标i和j交换其值不变,所以可将它的二重下标简化成单个下标,其对应关系为(5.1-11)第 5 章 晶体的感应双折射 相应的Bij也可简化为有六个分量的矩阵对于线性电光系数ijk,因其前面两个下标i,j互换对Bij没有影响,
5、所以也可将这两个下标简化为单个下标。经过这些简化后,只计线性电光效应的(5.1-6)式,可以写成如下形式:Bi=ijEj i=1,2,6;j=1,2,3(5.1-13)(5.1-12)第 5 章 晶体的感应双折射 相应的矩阵形式为(5.1-14)式中的(63)矩阵就是线性电光系数矩阵,它可以描述外加电场对晶体光学特性的线性效应。第 5 章 晶体的感应双折射 2.几种晶体的线性电光效应几种晶体的线性电光效应1)KDP型晶体的线性电光效应KDP(KH2PO4,磷酸二氢钾)晶体是水溶液培养的一种人工晶体,由于它很容易生长成大块均匀晶体,在0.21.5m波长范围内透明度很高,且抗激光破坏阈值很高,因此
6、在光电子技术中有广泛的应用。它的主要缺点是易潮解。KDP晶体是单轴晶体,属四方晶系。属于这一类型的晶体还有ADP(磷酸二氢氨)、KD*P(磷酸二氘钾)等,它们同为42m晶体点群,其外形如图5-1所示,光轴方向为x3轴方向。第 5 章 晶体的感应双折射 图5-1KDP型晶体外型图第 5 章 晶体的感应双折射(1)KDP型晶体的感应折射率椭球KDP型晶体无外加电场时,折射率椭球为旋转椭球,在主轴坐标系(折射率椭球主轴与晶轴重合)中,折射率椭球方程为(5.1-15)式中,分别为单轴晶体的寻常光和非常光的主折射率。第 5 章 晶体的感应双折射 当晶体外加电场时,折射率椭球发生形变。通过查阅手册,可以得
7、到KDP(42m晶类)型晶体的线性电光系数矩阵为,(5.1-16)第 5 章 晶体的感应双折射(5.1-17)由(5.1-14)式,其i为第 5 章 晶体的感应双折射 因此(5.1-18)再由(5.1-10)、(5.1-9)式可得KDP型晶体的感应折射率椭球表示式为(5.1-19)第 5 章 晶体的感应双折射(2)外加电场平行于光轴的电光效应相应于这种工作方式的晶片是从KDP型晶体上垂直于光轴方向(x3轴)切割下来的,通常称为x3-切割晶片。在未加电场时,光沿着x3方向传播不发生双折射。当平行于x3方向加电场时,感应折射率椭球的表示式为(5.1-20)或(5.1-21)第 5 章 晶体的感应双
8、折射 为了讨论晶体的电光效应,首先应确定感应折射率椭球的形状,也就是找出感应折射率椭球的三个主轴方向及相应的长度。为此,我们进一步考察感应折射率椭球的方程式。由(5.1-21)式可以看出,这个方程的x23项相对无外加电场时的折射率椭球没有变化,说明感应折射率椭球的一个主轴与原折射率椭球的x3轴重合,另外两个主轴方向可绕x3轴旋转得到。假设感应折射率椭球的新主轴方向为,则由构成的坐标系可由原坐标系(O-x1x2x3)绕x3轴旋转角得到,相应的坐标变换关系为第 5 章 晶体的感应双折射(5.1-22)将上式代入(5.1-21)式,经过整理可得:由于x1,x2,x3为感应折射率椭球的三个主轴方向,所
9、以上式中的交叉项为零,即应有(5.1-23)第 5 章 晶体的感应双折射 因为该式中的63、E3不为零,只能是cos2-sin2=0所以=45故x3-切割晶片沿光轴方向外加电场后,感应折射率椭球的三个主轴方向为原折射率椭球的三个主轴绕x3轴旋转45得到,该转角与外加电场的大小无关,但转动方向与电场方向有关。若取=45,折射率椭球方程为(5.1-24)第 5 章 晶体的感应双折射 或写成或(5.1-26)(5.1-25)该方程是双轴晶体折射率椭球的方程式。这说明,KDP型晶体的x3-切割晶片在外加电场E3后,由原来的单轴晶体变成了双轴晶体。其折射率椭球与x1Ox2面的交线由原来的r=no的圆,变
10、成现在的主轴在45方向上的椭圆,如图5-2所示。第 5 章 晶体的感应双折射 图5-2折射率椭球与x1Ox2面的交线第 5 章 晶体的感应双折射 现在进一步确定感应折射率椭球的三个主折射率。首先,将(5.1-24)式变换为因为63的数量级是1010cm/V,E3的数量级是104V/cm,所以63E31,故可利用幂级数展开,并只取前两项的关系,将上式变换成(5.1-27)第 5 章 晶体的感应双折射 由此得到感应折射率椭球的三个主折射率为(5.1-28)以上讨论了x3-切割晶片在外加电场E3后,光学特性(折射率)的变化情况。下面,具体讨论两种通光方向上光传播的双折射特性。第 5 章 晶体的感应双
11、折射 光沿x3方向传播。在外加电场平行于x3轴(光轴),而光也沿x3(x3)轴方向传播时,对于63贡献的电光效应来说,叫63的纵向运用。由第4章的讨论知道,在这种情况下,相应的两个特许偏振分量的振动方向分别平行于感应折射率椭球的两个主轴方向(x1和x2),它们的折射率由(5.1-28)式中的n1和n1给出,这两个偏振光在晶体中以不同的折射率(不同的速度)沿x3轴传播,当它们通过长度为d的晶体后,其间相位差由折射率差决定,表示式为(5.1-30)(5.1-29)第 5 章 晶体的感应双折射 式中,Ed恰为晶片上的外加电压U,故上式可表示为(5.1-31)通常把这种由外加电压引起的二偏振分量间的相
12、位差叫做“电光延迟”。显然,63纵向运用所引起的电光延迟正比于外加电压,与晶片厚度d无关。第 5 章 晶体的感应双折射(5.1-32)实际上,可以通过改变晶体上的外加电压得到不同的电光延迟,因而就使得电光晶体可以等效为可控的可变波片。例如,当电光延迟为j=/2、和2时,电光晶体分别相应于四分之一波片、半波片和全波片。由于外加电压的大小直接反映了晶体电光效应的优劣,因此在实际应用中,人们引入了一个表征电光效应特性的很重要的物理参量半波电压U/2或U,它是指产生电光延迟为j=的外加电压。由(5.1-31)式可以求得半波电压为第 5 章 晶体的感应双折射 它只与材料特性和波长有关。例如,在=0.55
13、m的情况下,KDP晶体的no=1.512,63=10.61010cm/V,U/2=7.45kV;KD*P晶体的no=1.508,63=20.81010cm/V,U/2=3.8kV。第 5 章 晶体的感应双折射 光沿x2(或x1)方向传播。当外加电压平行于x3轴方向,光沿x2(或x1)轴方向传播时,63贡献的电光效应叫63的横向运用。这种工作方式通常对晶体采取45-x3切割,即如图5-3所示,晶片的长和宽与x1、x2轴成45方向。光沿晶体的110方向传播,晶体在电场方向上的厚度为d,在传播方向上的长度为l。如前所述,当沿x3方向外加电压时,晶体的感应折射率椭球的主轴方向系由原折射率椭球主轴绕x3
14、轴旋转45得到,因此,光沿感应折射率椭球的主轴方向x2传播时,相应的两个特许线偏振光的折射率为n1和n3,该二光由晶片射出时的相位差(“电光延迟”)为第 5 章 晶体的感应双折射 图5-3用于63横向运用的KDP晶片第 5 章 晶体的感应双折射 上式中,等号右边第一项表示由自然双折射造成的相位差;第二项表示由线性电光效应引起的相位差。(5.1-33)第 5 章 晶体的感应双折射 与63纵向运用相比,63横向运用有两个特点:i)电光延迟与晶体的长厚比l/d有关,因此可以通过控制晶体的长厚比来降低半波电压,这是它的一个优点;ii)横向运用中存在着自然双折射作用,由于自然双折射(晶体的主折射率no、
15、ne)受温度的影响严重,所以对相位差的稳定性影响很大。实验表明,KDP晶体的(none)/T约为1.110-5/,对于0.6328m的激光通过30mm的KDP晶体,在温度变化1时,将产生约1.1的附加相位差。为了克服这个缺点,在横向运用时,一般均需采取补偿措施。经常采用两种办法:第 5 章 晶体的感应双折射 其一,用两块制作完全相同的晶体,使之90排列,即使一块晶体的x1和x3轴方向分别与另一块晶体的x3和x1轴平行,如图5-4(a)所示;其二,使一块晶体的x1和x3轴分别与另一种晶体的x1和x3轴反向平行排列,在中间放置一块1/2波片,如图5-4(b)所示。第 5 章 晶体的感应双折射 图5
16、-4补偿自然双折射的两种晶体配置第 5 章 晶体的感应双折射 就补偿原理而言,这两种方法相同,都是使第一块晶体中的o光进入第二块晶体变成e光,第一块晶体中的e光进入第二块晶体变为o光,而且二晶体长度和温度环境相同,所以,由自然双折射和温度变化引起的相位差相互抵消。因此,由第二块晶体射出的两光束间,只存在由电光效应引起的相位差:(5.1-34)相应的半波电压为(5.1-35)第 5 章 晶体的感应双折射 与(5.1-32)式进行比较有(5.1-36)显然,可以通过改变晶体的长厚比,降低横向运用的半波电压,使得横向运用时的半波电压低于纵向运用。但由于横向运用时必须采取补偿措施,结构复杂,对两块晶体
17、的加工精度要求很高,所以,一般只有在特别需要较低半波电压的场合才采用。第 5 章 晶体的感应双折射 2)LiNbO3型晶体的线性电光效应LiNbO3(铌酸锂)以及与之同类型的LiTaO3(钽酸锂)、BaTaO3(钽酸钡)等晶体,属于3m晶体点群,为单轴晶体。它们在0.45m波长范围内的透过率高达98%,光学均匀性好,不潮解,因此在光电子技术中经常采用。其主要缺点是光损伤阈值较低。LiNbO3型晶体未加电场时的折射率椭球为旋转椭球,即式中,no和ne分别为单轴晶体的寻常光和非常光的主折射率。(5.1-37)第 5 章 晶体的感应双折射 当晶体外加电场时,由(5.1-14)式及LiNbO3(3m晶
18、类)型晶体的线性电光系数矩阵,有(5.1-38)第 5 章 晶体的感应双折射 由此得到(5.1-39)第 5 章 晶体的感应双折射 将这些分量通过(5.1-10)式代入(5.1-9)式,即得LiNbO3型晶体外加电场后的感应折射率椭球方程:(5.1-40)第 5 章 晶体的感应双折射 下面分两种情况进行讨论:电场平行于x3轴的横向运用。当外加电场平行于x3轴时,E1=E2=0,(5.1-40)式变为(5.1-41)类似前面的处理方法,(5.1-41)式可表示(5,1-42)第 5 章 晶体的感应双折射 该式中没有交叉项,因此在E3电场中,LiNbO3型晶体的三个主轴方向不变,仍为单轴晶体,只是
19、主折射率的大小发生了变化,近似为(5.1-43)第 5 章 晶体的感应双折射 no和ne为在x3方向外加电场后,晶体的寻常光和非常光的主折射率,其主折射率之差为(5.1-44)上式等号右边第一项是自然双折射;第二项是外加电场E3后的感应双折射,其中(n3e33n3o13)是由晶体材料决定的常数,为方便起见,常将其写成n3o*,*=(ne/no)33313称为有效电光系数。LiNbO3型晶体加上电场E3后,由于x3轴仍为光轴,因而其纵向运用没有电光延迟。但可以横向运用,即光波沿垂直x3轴的方向传播。第 5 章 晶体的感应双折射 当光波沿x1轴(或x2轴)方向传播时,出射沿x2轴和x3轴(或沿x1
20、轴和x3轴)方向振动的二线偏振光之间,将产生受电场控制的相位差:(5.1-45)其中,l为光传播方向上的晶体长度;d为电场方向上的晶体厚度;U3为沿x3方向的外加电压。该式表明,LiNbO3型晶体x3轴方向上外加电压的横向运用,与KDP型晶体45-x3切片的63横向运用类似,有自然双折射的影响。第 5 章 晶体的感应双折射 电场在x1Ox2平面内的横向运用。这种工作方式是电场加在x1Ox2平面内的任意方向上,而光沿着x3方向传播。此时,E1、E20,E3=0,代入(5.1-40)式,可得感应折射率椭球为(5.1-46)显然,外加电场后,晶体由单轴晶体变成了双轴晶体。为了求出相应于沿x3方向传播
21、的光波折射率,根据折射率椭球的性质,需要确定垂直于x3轴的平面与折射率椭球的截线。这只需在(5.1-46)式中令x3=0即可。由此可得截线方程为第 5 章 晶体的感应双折射(5.1-47)这是一个椭圆方程。为了方便地求出这个椭圆的主轴方向和主轴值,可将(5.1-47)式主轴化,使(Ox1x2x3)坐标系绕x3轴旋转角,变为坐标系,其变换关系为(5.1-48)由此,(5.1-47)式变为第 5 章 晶体的感应双折射 经整理后得若x1、x2为主轴方向,则上式中的交叉项应等于零,有(5.1-49)因为E1、E2是外加电场E在x1,x2方向上的分量,E的取向不同,则E1,E2不同,所以截线椭圆的主轴取
22、向也不同。当电场E沿x1方向时,E1=E,E2=0,则相应的=45,即截线椭圆的主轴相对原方向x1,x2旋转了45;第 5 章 晶体的感应双折射 当电场E沿x2方向时,E1=0,E2=E,=0,即截线椭圆主轴方向不变。实际上,当E=E1时,感应折射率椭球的主轴除绕x3轴旋转45外,还再绕x1轴旋转一个小角度,其角大小满足当E=E2时,感应折射率椭球的主轴绕x1轴旋转一个小角度,角大小满足(5.1-50)(5.1-51)第 5 章 晶体的感应双折射 由于和都很小,通常均略去不计。于是,在感应主轴坐标系中,截线椭圆方程为(5.1-52)利用(1x)n1nx的关系,上式可写成因此(5.1-53)(5
23、.1-54)第 5 章 晶体的感应双折射 若外加电场E与x1轴的夹角为,则(5.1-55)(5.1-56)将(5.1-56)式与(5.1-49)式进行比较,可见tan2=cot=902(5.1-57)因此,将(5.1-57)式代入(5.1-55)式,再将E1、E2关系式代入(5.1-54)式得第 5 章 晶体的感应双折射(5.1-58)当光沿x3方向传过l距离后,由于线性电光效应引起的电光延迟为(5.1-59)相应的半波电压为(5.1-60)第 5 章 晶体的感应双折射 式中,l是光传播方向上晶体的长度;d为外加电场方向上晶体的厚度。由此可见,在LiNbO3型晶体x1Ox2平面内外加电场,光沿
24、x3方向传播时,可以避免自然双折射的影响,同时半波电压较低。因此,一般情况下,若用LiNbO3晶体作电光元件,多采用这种工作方式。在实际应用中应注意,外加电场的方向不同(例如,沿x1方向或x2方向),其感应主轴的方向也不相同。第 5 章 晶体的感应双折射 3)GaAs、BGO型晶体的线性电光效应GaAs(砷化镓)晶体属于43m晶体点群,这一类晶体还有InAs(砷化铟)、CuCl(氯化铜)、ZnS(硫化锌)、CdTe(碲化镉)等;BGO(锗酸)晶体属于23晶体点群,这一类晶体还有BSO(硅酸)等,它们都是立方晶体,在电光调制、光信息处理等领域内,有着重要的应用。这类晶体未加电场时,光学性质是各向
25、同性的,其折射率椭球为旋转球面,方程式为(5.1-61)第 5 章 晶体的感应双折射 式中,x1,x2,x3坐标取晶轴方向。它们的线性电光系数矩阵为(5.1-62)因此,在外加电场后,感应折射率椭球变为在实际应用中,外加电场的方向通常有三种情况:电场垂直于(001)面(即沿x3轴方向),垂直于(110)面和垂直于(111)面。(5.1-63)第 5 章 晶体的感应双折射(1)电场垂直于(001)面的情况当外加电场垂直于(001)面时,其情况与KDP型晶体沿x3轴方向加电场相似,用类似的处理方法可以得到如下结论:晶体的光学性质由各向同性变为双轴晶体,感应折射率椭球的三个主轴方向由原折射率椭球的三
26、个主轴绕x3轴旋转45得到,如图5-5所示。感应主折射率分别为(5.1-64)第 5 章 晶体的感应双折射 图5-5E垂直(001)面的感应主轴第 5 章 晶体的感应双折射 当光沿x3轴方向传播时,电光延迟为(5.1-65)式中,U3是沿x3轴方向的外加电压。当光沿x1轴方向(或x2轴方向)传播时,电光延迟为(5.1-66)式中,l是沿光传播方向上晶体的长度;d是沿外加电压方向上晶体的厚度。第 5 章 晶体的感应双折射(2)电场垂直于(110)面的情况当外加电场方向垂直于(110)面时,如图5-6所示,感应主轴x3垂直于(110)面,x1和x2的夹角为(001)面所等分,三个感应主折射率分别为
27、(5.1-67)这时晶体由各向同性变为双轴晶体,当光沿x3方向传播时,电光延迟为(5.1-68)式中,l是晶体沿x3轴方向的长度;d是晶体沿垂直于(110)面的厚度。第 5 章 晶体的感应双折射 图5-6E垂直于(110)面的感应主轴第 5 章 晶体的感应双折射(3)电场垂直于(111)面的情况当外加电场方向垂直于(111)面时,晶体由各向同性变为单轴晶体,光轴方向(x3)就是外加电场的方向,另外两个感应主轴x1和x2的方向可以在垂直于x3轴的(111)面内任意选取,如图5-7所示。相应的三个主折射率为(5.1-69)第 5 章 晶体的感应双折射 图5-7E垂直于(111)面的感应主轴第 5
28、章 晶体的感应双折射 当光沿x3轴方向传播时,没有电光延迟。当光沿垂直于x3轴方向传播时,电光延迟为式中,l为晶体沿光传播方向的长度;d为晶体沿外加电场方向的厚度。(5.1-70)第 5 章 晶体的感应双折射 5.1.3晶体的二次电光效应晶体的二次电光效应实验证明,自然界有许多光学各向同性的固体、液体和气体在强电场(电场方向与光传播方向垂直)作用下会变成各向异性,而且电场引起的双折射和电场强度的平方成正比,这就是众所周知的克尔效应,或称为二次电光效应。实际上,克尔效应是三阶非线性光学效应,可以存在于所有电介质中,某些极性液体(如硝基苯)和铁电晶体的克尔效应很强。所有晶体都具有二次电光效应,但是
29、在没有对称中心的20类压电晶体中,它们的线性电光效应远较二次电光效应显著,所以对于这类晶体的二次电光效应一般不予考虑。在具有对称中心的晶体中,它们最低阶的电光效应就是二次电光效应,但通常我们感兴趣的只是属于立方晶系的那些晶体的二次电光效应。因为这些晶体在未加电场时,在光学上是各向同性的,这一点在应用上很重要。第 5 章 晶体的感应双折射 如前所述,克尔效应的一般表达式为ij=hijpqEpEqi,j,p,q=1,2,3(5.1-71)式中,Ep、Eq是外加电场分量;hijpq是晶体的二次电光系数(或克尔系数),它是一个四阶张量。但在实用中,人们习惯于将Bij与晶体的极化强度联系起来,表示为:i
30、j=gijpqPpPqi,j,p,q=1,2,3(5.1-72)第 5 章 晶体的感应双折射 其中,Pp、Pq是晶体上外加电场后的极化强度分量,gijpq也叫二次电光系数,一般手册给出的是gijpq。可以证明,hijpq和gijpq都是对称的四阶张量,均可采用简化下标表示,即ijm,pqn,m、n的取值范围是从1到6。于是,克尔系数可以从99的四阶张量简化成66的矩阵,相应地,(5.1-71)式和(5.1-72)式可以写成:(5.1-73)(5.1-74)第 5 章 晶体的感应双折射(5.1-75)当n=4,5,6时,有(5.1-76)第 5 章 晶体的感应双折射 下面,具体考察m3m晶类的二
31、次电光效应。属于这一类晶体的有KTN(钽酸铌钾),KTaO3(钽酸钾)、BaTiO3(钛酸钡)、NaCl(氯化钠)、LiCl(氯化锂)、LiF(氟化锂)、NaF(氟化钠)等。未加电场时,m3m晶体在光学上是各向同性的,折射率椭球为旋转球面:(5.1-77)第 5 章 晶体的感应双折射 当晶体外加电场时,折射率椭球发生变化,根据(5.1-74)式和m3m晶类的二次电光系数矩阵,其二次电光效应矩阵关系为(5.1-78)第 5 章 晶体的感应双折射 由此得出第 5 章 晶体的感应双折射 将上面分量代入折射率椭球的一般形式(5.1-8)式,得现在讨论一种简单的情况:外电场沿着001方向(x3轴方向)作
32、用于晶体,即E1=E2=0,E3=E。因为立方晶体的电场E和极化强度有如下关系:Pi=0Ei i=1,2,3(5.1-80)(5.1-79)第 5 章 晶体的感应双折射 所以极化强度为P1=P2=0,P3=0E,代入(5.1-9)式,得(5.1-81)显然,当沿x3方向外加电场时,由于二次电光效应,折射率椭球由球变成一个旋转椭球,其主折射率为(5.1-82)第 5 章 晶体的感应双折射 当光沿x3方向传播时,无双折射现象发生;当光沿100方向(x1方向)传播时,通过晶体产生的电光延迟为(5.1-83)相应的半波电压为(5.1-84)第 5 章 晶体的感应双折射 5.1.4 晶体电光效应的应用举
33、例晶体电光效应的应用举例1.电光调制电光调制将信息电压(调制电压)加载到光波上的技术叫光调制技术。利用电光效应实现的调制叫电光调制。图5-8是一种典型的电光强度调制器示意图,电光晶体(例如KDP晶体)放在一对正交偏振器之间,对晶体实行纵向运用,则加电场后的晶体感应主轴x1、x2方向,相对晶轴x1、x2方向旋转45,并与起偏器的偏振轴P1成45夹角。第 5 章 晶体的感应双折射 图5-8电光强度调制器第 5 章 晶体的感应双折射 根据(4.5-8)式,通过检偏器输出的光强I与通过起偏器输入的光强I0之比为(5.1-85)当光路中未插入1/4波片时,上式的j即是电光晶体的电光延迟。由(5.1-31
34、)式、(5.1-32)式,有所以(5.1-85)式变为称I/I0为光强透过率(%),它随外加电压的变化如图5-9所示。(5.1-86)第 5 章 晶体的感应双折射 图5-9透过率与外加电压关系图第 5 章 晶体的感应双折射 如果外加电压是正弦信号则透过率为(5.1-88)该式说明,一般的输出调制信号不是正弦信号,它们发生了畸变,如图5-9中曲线3所示。如果在光路中插入1/4波片,则光通过调制器后的总相位差是(/2+j),因此(5.1-85)式变为(5.1-89)(5.1-87)第 5 章 晶体的感应双折射 工作点由O移到A点。在弱信号调制时,U1,因而AB面上各点的振动传到AB(AB)面上时,
35、通过了不同的光程:由A到A,整个路程完全在空气中,光程为l;由B到B,整个路程完全在玻璃中,光程为nl;A和B之间的其它各点都通过一段玻璃,例如,由C到C,光程为nl+(l-l)=l+(n-1)l。从上到下,光在玻璃中的路程l线性增加,所以整个光程是线性增加的。因此,透射波的波阵面发生倾斜,偏角为,由(5.1-91)决定。第 5 章 晶体的感应双折射 图5-10光束通过光楔的偏转第 5 章 晶体的感应双折射 电光偏转器就是根据上述原理制成的。图5-11是一种由两块KDP楔形棱镜组成的双KDP楔形棱镜偏转器,棱镜外加电压沿着图示x3方向,两块棱镜的光轴方向(x3)相反,x1、x2为感应主轴方向。
36、现若光线沿x2轴方向入射,振动方向为x1轴方向,则根据前面的分析可知:光在下面棱镜中的折射率为在上面棱镜中,由于电场与该棱镜的x3方向相反,所以折射率为。因此,上下光的折射率之差为,光束穿过偏振器后的偏转角为(5.1-92)第 5 章 晶体的感应双折射 图5-11双KDP楔形棱镜偏转器第 5 章 晶体的感应双折射 5.2 声声 光光 效效 应应 5.2.1 弹光效应和弹光系数弹光效应和弹光系数弹光效应可以按照电光效应的方法进行处理,即应力或应变对介质光学性质(介质折射率)的影响,可以通过介质折射率椭球的形状和取向的改变来描述。假设介质未受外力作用时的折射率椭球为(5.2-1)第 5 章 晶体的
37、感应双折射 介质受到应力作用后的折射率椭球变为(5.2-2)或(5.2-3)式中,Bij为介质受应力作用后的折射率椭球方程各系数的变化量,它是应力的函数,Bij=f()。若考虑线性效应,略去所有的高次项,Bij可表示为Bij=ijklkli,j,k,l=1,2,3(5.2-4)在此,考虑了介质光学性质的各向异性,认为应力kl和折射率椭球的系数增量Bij都是二阶张量;ijkl是压光系数,它是一个四阶张量,有81个分量。第 5 章 晶体的感应双折射 根据虎克(Hooke)定律,应力和应变有如下关系:kl=Cklrssrs k,l,r,s=1,2,3(5.2-5)式中,srs是弹性应变;Cklrs是
38、倔强系数。将(5.2-5)式代入(5.2-5)式,ij可用应变参量描述:Bij=ijklCklrssrs=Pijrssrs (5.2-6)式中,Pijrs=ijklCklrs;Pijrs叫弹光系数,它也是四阶张量,有81个分量。由于ij和kl都是对称二阶张量,有ij=ji,kl=lk,所以有ijkl=jilk,故可将前后两对下标ij和kl分别替换成单下标,将张量用矩阵表示。相应的下标关系为第 5 章 晶体的感应双折射 张量表示(ij)(kl)(rs)11223323,3231,1312,21矩阵表示(m)(n)123456且有n=1,2,3时,mn=ijkl,如21=2211n=4,5,6时,
39、mn=2ijkl,如24=22223第 5 章 晶体的感应双折射 采用矩阵形式后,(5.2-4)式变换为Bm=mnn m,n=1,2,6(5.2-7)这样,压光系数的分量数目由张量表示时的81个减少为36个。应指出,在(5.2-7)式中,mn在分量形式上与二阶张量分量相似,但它不是二阶张量,而是一个66矩阵。类似地,对弹光系数Pijkl的下标也可以进行简化,将(5.2-6)式变为矩阵(分量)形式:Bm=Pmnsnm,n=1,2,6(5.2-8)与mn的差别是,Pmn的所有分量均有Pmn=Pijkl,并且有Pmn=mrCrn(m,n,r=1,2,6)。第 5 章 晶体的感应双折射(1)23和m3
40、立方晶体受到平行于立方体轴的单向应力作用假设立方晶体的三个主轴为x1,x2、x3,应力平行于x1方向,则施加应力前的折射率椭球为旋转球面:式中,B0=1/n20。在应力作用下,折射率椭球发生了形变,在一般情况下,折射率椭球方程式可表示如下:(5.2-9)(5.2-10)第 5 章 晶体的感应双折射 根据(5.2-7)式及立方晶体的mn矩阵形式,有由此可得(5.2-11)第 5 章 晶体的感应双折射 将其代入(5.2-10)式,得到(5.2-12)第 5 章 晶体的感应双折射 可见,当晶体沿x1方向加单向应力时,折射率椭球由旋转球面变成了椭球面,主轴仍为x1、x2、x3,立方晶体变成双轴晶体,相
41、应的三个主折射率为(5.2-13)第 5 章 晶体的感应双折射(2)43m、432和m3m立方晶体受到平行于立方体轴(例如x1方向)的单向应力作用这种情况与上述情况基本相同,只是由于这类晶体的12=13,所以(5.2-14)即晶体由光学各向同性晶体变成了单轴晶体。第 5 章 晶体的感应双折射 5.2.2 声光衍射声光衍射超声波是一种弹性波,当它通过介质时,介质中的各点将出现随时间和空间周期性变化的弹性应变。由于弹光效应,介质中各点的折射率也会产生相应的周期性变化。当光通过有超声波作用的介质时,相位就要受到调制,其结果如同它通过一个衍射光栅,光栅间距等于声波波长,光束通过这个光栅时就要产生衍射,
42、这就是通常观察到的声光效应。按照超声波频率的高低和介质中声光相互作用长度的不同,由声光效应产生的衍射有两种常用的极端情况:喇曼乃斯(Raman-Nath)衍射和布喇格衍射。衡量这两类衍射的参量是(5.2-15)第 5 章 晶体的感应双折射 式中,L是声光相互作用长度;是通过声光介质的光波长;s是超声波长。当Q1(实践证明,当Q0.3)时,为喇曼乃斯衍射。当Q1(实际上,当Q4)时,为布喇格衍射。而在0.3QvL(nRvR(nLnR)。根据这一种假设,可以解释旋光现象。第 5 章 晶体的感应双折射 假设入射到旋光介质上的光是沿水平方向振动的线偏振光,则按照归一化琼斯矩阵方法,根据菲涅耳假设,可将
43、入射光波琼斯矢量表示为如果右旋和左旋圆偏振光通过厚度为l的旋光介质后,其相位滞后分别为(5.3-4)(5.3-3)第 5 章 晶体的感应双折射 则其合成波的琼斯矢量为(5.3-5)第 5 章 晶体的感应双折射 引入(5.5-6)合成波的琼斯矢量可以写为(5.5-7)第 5 章 晶体的感应双折射 它代表了光振动方向与水平方向成角的线偏振光。这说明,入射的线偏振光光矢量通过旋光介质后,转过了角。由(5.3-4)式和(5.3-6)式可以得到(5.3-8)如果左旋圆偏振光传播得快,nL0,即光矢量是向逆时针方向旋转的;如果右旋圆偏振光传播得快,nRnL,则vL(即nRvR(即nLvL(即nRnL)。所
44、以,在界面AE上,左旋光远离法线方向折射,右旋光靠近法线方向折射,于是左、右旋光分开了。在第二个界面CE上,左旋光靠近法线方向折射,右旋光远离法线方向折射,于是两束光更加分开了。在界面CD上,两束光经折射后进一步分开。这个实验结果证实了左、右旋圆偏振光传播速度不同的假设。第 5 章 晶体的感应双折射 图5-21菲涅耳棱镜组第 5 章 晶体的感应双折射 当然,菲涅耳的解释只是唯象理论,它不能说明旋光现象的根本原因,不能回答为什么在旋光介质中二圆偏振光的速度不同。这个问题必须从分子结构去考虑,即光在物质中传播时,不仅受分子的电矩作用,还要受到诸如分子的大小和磁矩等次要因素的作用,考虑到这些因素后,
45、入射光波的光矢量振动方向旋转就是必然的了。进一步,如果我们将旋光现象与前面讨论的双折射现象进行对比,就可以看出它们在形式上的相似性,只不过一个是指在各向异性介质中的二正交线偏振光的传播速度不同,一个是指在旋光介质中的二反向旋转的圆偏振光的传播速度不同。因此,可将旋光现象视为一种特殊的双折射现象圆双折射,而将前面讨论的双折射现象称为线双折射。第 5 章 晶体的感应双折射 5.3.2法拉第效应法拉第效应上述旋光现象是旋光介质固有的性质,因此可以叫作自然圆双折射。与感应双折射类似,也可以通过人工的方法产生旋光现象。介质在强磁场作用下产生旋光现象的效应叫磁致旋光效应,或法拉第(Faraday)效应。1
46、846年,法拉第发现,在磁场的作用下,本来不具有旋光性的介质也产生了旋光性,能够使线偏振光的振动面发生旋转,这就是法拉第效应。观察法拉第效应的装置结构如图5-22所示:将一根玻璃棒的两端抛光,放进螺线管的磁场中,再加上起偏器P1和检偏器P2,让光束通过起偏器后顺着磁场方向通过玻璃棒,光矢量的方向就会旋转,旋转的角度可以用检偏器测量。第 5 章 晶体的感应双折射 图5-22法拉第效应第 5 章 晶体的感应双折射 后来,维尔德(Verdet)对法拉第效应进行了仔细的研究,发现光振动平面转过的角度与光在物质中通过的长度l和磁感应强度B成正比,即=VBl(5.3-29)式中,V是与物质性质有关的常数,
47、叫维尔德常数。一些常用物质的维尔德常数列于表5-1。第 5 章 晶体的感应双折射 表表 5-1 几种物质的维尔德常数几种物质的维尔德常数(用用=0.589 3m的偏振光照明的偏振光照明)物质温度/CV/rad/(Tm)磷冕玻璃轻火石玻璃水晶(垂直光轴)食盐水磷二硫化碳181820162033204.869.224.8310.443.8138.5712.30第 5 章 晶体的感应双折射 实验表明,法拉第效应的旋光方向取决于外加磁场方向,与光的传播方向无关,即法拉第效应具有不可逆性,这与具有可逆性的自然旋光效应不同。例如,线偏振光通过天然右旋介质时,迎着光看去,振动面总是向右旋转,所以,当从天然右
48、旋介质出来的透射光沿原路返回时,振动面将回到初始位置。但线偏振光通过磁光介质时,如果沿磁场方向传播,迎着光线看,振动面向右旋转角度,而当光束沿反方向传播时,振动面仍沿原方向旋转,即迎着光线看振动面向左旋转角度,所以光束沿原路返回,一来一去两次通过磁光介质,振动面与初始位置相比,转过了2角度。第 5 章 晶体的感应双折射 由于法拉第效应的这种不可逆性,使得它在光电子技术中有着重要的应用。例如,在激光系统中,为了避免光路中各光学界面的反射光对激光源产生干扰,可以利用法拉第效应制成光隔离器,只允许光从一个方向通过,而不允许反向通过。这种器件的结构示意图如图5-23所示,让偏振片P1与P2的透振方向成
49、45角,调整磁感应强度B,使从法拉第盒出来的光振动面相对P1转过45,刚好能通过P2;但对于从后面光学系统(例如激光放大器2等)各界面反射回来的光,经P2和法拉第盒后,其光矢量与P1垂直,因此被隔离而不能返回到光源。第 5 章 晶体的感应双折射 图5-23法拉第光隔离器应用示意图第 5 章 晶体的感应双折射 例例 题题 例例 5-1 LiNbO3晶体在=0.55m时,no=2.29,电光系数22=3.410-12m/V,试讨论其沿x2方向外加电压、光沿x3方向传播时的电光延迟和相应的半波电压特性。解解:如图5-24所示,当LiNbO3晶体沿x2方向外加电压时,折射率椭球的三个主轴方向基本不变,
50、只是主折射率大小变化为第 5 章 晶体的感应双折射 图5-24电场平行于x2轴第 5 章 晶体的感应双折射 光沿着x3方向传播时,由线性电光效应引起的电光延迟为半波电压为当d/l=1时,U/2=6.74kV;d/l=1/2时,U/2=3.37kV。由于这种运用方式,既可避免自然双折射的影响,结构又简单,并且可以通过控制长厚比降低半波电压,因此在实际应用中经常采用。第 5 章 晶体的感应双折射 例例 5-2由KDP晶体制成的双楔形棱镜偏转器,l=D=h=1cm,电光系数63=10.610-12m/V,no=1.51,当U=1kV时,偏转角=?为增大偏转角度,可采用图5-25所示的多级棱镜偏转器,