《小学六年级数学竞赛试题及详细答案(C级).doc》由会员分享,可在线阅读,更多相关《小学六年级数学竞赛试题及详细答案(C级).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优质文本小学六年级数学竞赛试题及详细答案C级一、计算下面各题,并写出简要的运算过程共15分,每题5分二、填空题共40分,每题5分1.在下面的“中填上适宜的运算符号,使等式成立:199219921992=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。那么,这个等腰梯形的周长是_ _厘米。3.一排长椅共有90个座位,其中一些座位已经有人就座了。这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。原来至少有_ _人已经就座。4.用某自然数a去除1992,得到商是46,余数是r。 _, _。5.“重阳节那天,
2、延龄茶社来了25位老人品茶。他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。其中年龄最大的老人今年_ 岁。6.学校买来历史、文艺、科普三种图书假设干本,每个学生从中任意借两本。那么,至少 个学生中一定有两人所借的图书属于同一种。7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。那么得分最少的选手至少得 分,至多得 分。每位选手的得分都是整数8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。那么,只有当锯得的38毫米的铜管为 段、90毫米的铜管为_ 段时,所损耗的铜管才能最少
3、。三、解答下面的应用题要写出列式解答过程。列式时,可以分步列式,可以列综合算式,也可以列方程共20分,每题5分1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。现由甲工程队先修3天。余下的路段由甲、乙两队合修,正好花6天时间修完。问:甲、乙两个工程队每天各修路多少米? 2.一个人从县城骑车去乡办厂。他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。3.一个长方体的宽和高相等,并且都等于长的一半如图12。将这个长方体
4、切成12个小长方体,这些小长方体的外表积之和为600平方分米。求这个大长方体的体积。4.某装订车间的三个工人要将一批书打包后送往邮局要求每个包内所多35本。第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包。这批书共有多少本?四、问答题共35分1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。问:保证一定获胜的对策是什么?5分2.有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?6分3.个体铁铺的金师傅加工某种铁皮制品,需要
5、如图13所示的a、b两种形状的铁皮毛坯。现有甲、乙两块铁皮下脚料如图14、图15,图13、图14、图15中的小方格都是边长相等的正方形。金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品“成套,指a、b两种铁皮同样多,并且一点材料也不浪费。问:1金师傅应当从甲、乙两块铁皮下脚料中选哪一块?3分2怎样裁剪所选用的下脚料?请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯5分 4.只修改21475的某一位数字,就可以使修改后的数能被225整除。怎样修改?6分5.1要把9块完全相同的巧克力平均分给4个孩子每块巧克力最多只能切成两局部,怎么分?5分2如果把上面1中的“4个孩子改为“
6、7个孩子,好不好分?如果好分,怎么分?如果不好分,为什么?5分详解与说明一、计算题说明:要想得到简便的算法,必须首先对题中每个数和运算符号作全面、,马上就应该知道它可以化为;而与36只差一个小数点,于是,又容易想到把“654.336变形为“65433.6,完成了这步,就为正采用了同样的手段,这种技巧本报屡次作过介绍。说明:解这道题可以从不同的角度来观察。解法一是先观察、比拟分子局部每个加数连乘积的因数,发现了前后之间的倍数关系,从而把“1324作为公因数提到前面,分母局部也作了类似的变形。而解法二,是着眼于整个繁分数,由分子看到分母,发现分子局部的左、中、右三个乘分子局部括号内三个乘积的和约去
7、了。此题是根据?数学之友?7第2页例5改编的。3.解法一:解法二:说明:解法一是求等比数列前n项和的一般方法,这种方法本报217期第一版“好伙伴信箱栏中曾作过介绍。由于此题中后一个加数总是前一个加数的一半,因而,只要添上一个最小的加数,就能凑成“2倍,也就是它前面的一个加数,这就不难想到解法二。二、填空题1.解:199+21+9-9+219-9-2=8338=1992或1992199219-9+2=83212=1992此题答案不唯一,只要所填的符号能使等式成立,都是正确的说明:在四个数字之间填上三个运算符号,使它们的计算结果为某个数,这是选手们熟悉的“算式谜题。而这道题却不容易一下子判断括号内
8、的计算结果应该是多少,这就需要把1992分解为三个数连乘积的形式,1992=833222,因为83、3、2、2、2组成三个乘积为1992的数有多种组合形式,所以填法就不唯一了。2.解:55+15+252=120厘米说明:要算周长,需要知道上底、下底、两条腰各是多长。容易判断:下底最长,应为55厘米。关键是判断腰长是多少,如果腰长是15厘米,152+25=55,说明上底与两腰长度之和恰好等于下底长,四条边不能围成梯形,所以,腰长只能是25厘米。读者从本报190期第三版?任意三根小棒都能围成三角形吗?一文中应当受到启发。3.解:最少有说明:根据题意,可推知这排长椅上已经就座的任意相邻的两人之间都有
9、两个空位。但仅从这个结果中还不能肯定长椅上共有多少个座位,因为已经就座的人最左边一个最右边一个既可以坐在左边右边起第一个座位上,也可以坐在左边右边起第二个座位上如图16所排出的两种情况,“表示已经就座的人,“表示空位。不过,题目中问“至少有多少人就座,那就应选第二种情况,每三人一组,每组中有一人已经就座。12图164.解法一:由 199246=4314立即得知:43,14解法二:根据带余除法的根本关系式,有1992=460ra由 1992-46a0,推知由1992-46aa,推知因为 a是自然数,所以 431992-4643=14说明:此题并不难,因此应尽可能运用简单的方法,迅速地算出答案。解
10、法一是根据 1992a的商是 46,因而直接用 199246得到了a和r。解法二用的是“估值法。5.解法一:先算出这25位老人今年的岁数之和为2000-252=1950年龄最大的老人的岁数为1950+1+2+3+4+2425=225025=90岁解法二:两年之后,这25位老人的平均年龄年龄处于最中间的老人的年龄为200025=80岁两年后,年龄最大的老人的岁数为80+12=92岁年龄最大的老人今年的岁数为92-2=90岁说明:解法一采用了“补齐的手段详见本报241期第一版?“削平与“补齐?一文。当然,也可以用“削平法先求年龄最小的老人的岁数,再加上24。解法二着眼于 25人的平均年龄,先算年龄
11、处于最中间的老人的岁数,算起来更简便些。6.解:根据“抽屉原理,可知至少7个学生中有两人所借图书的种类完全相同。说明:此题是抽屉原理的应用。应用这个原理的关键是制造抽屉。从历史、文艺、科普三种图书假设干本中任意借两本,共有史,史、文,文、科,科、史,文、史,科、文,科这六种情况,可把它们看作六只“抽屉,每个学生所借的两本书一定是这六种情况之一。换句话说,如果把借书的学生看作“苹果,那么至少7个苹果放入六个抽屉,才能有两个苹果放在同一个抽屉内。此题是由本报234期“奥林匹克学校拦的例2改换而成的。7.解:得分最低者最少得404-90+89+88+87=50分得分最低者最多得404-90-1+2+
12、34=77分说明:解这道题要考虑两种极端情形:1要使得分最低的选手的得分尽可能地少,在五名选手总分一定的条件下,应该使前四名领先于第五名的分数尽可能多才行。第一名得分是的90分,这就要求第二、三、四名的得分尽可能靠近90分,而且互不相等,只有第二、三、四名依次得89分、88分、87分时,第五名得分最少。2要使得分最低的选手得分最多,在总分和第一名得分一定的条件下,应当使第二、三、四、五名的得分尽可能接近。考虑到他们的得分又要互不相等,只有当第二、三、四、五名的得分为四个连续自然数时才能做到,用“削平的方法可以算出第五名最多得多少分。此题是根据?数学之友?7第46页第13题改编的。8.解:设38
13、毫米、90毫米的铜管分别锯X段、Y段,那么,根据题意,有38901=100039911001要使损耗最少,就应尽可能多锯90毫米长的铜管,也就是说上面式中的X应尽可能小,Y尽可能大。由于X、Y都必须是自然数,因而不难推知:7,8。即38毫米的铜管锯7段,90毫米的铜管锯8段时,损耗最少。说明:选手们读题之后,可以马上想到:要使损耗最少,应尽可能多锯90毫米长的铜管,但必须符合“两种铜管都有、“两种铜管长度之和加上损耗局部长度应等于1米两个条件,这样算起来就不那么简单了。这种题目,借助等量关系式来进行推理比拟方便,不过,列方程时可别忘掉那损耗的1毫米,而且损耗了几个“1毫米也不能算错,应该是“总
14、段数-1。列出方程式之后,还有两点应当讲究:1变形要合理;2要选用简便算法。如上面解法中,把1001写成71113,39写成313,91写成713,使分子局部和分母局部可以约分,对于迅速推知最后结果是大有帮助的。此题是?数学之友?7第51页练习六中的原题。三、应用题1.解法一:假设乙工程队每天与甲工程队修的路同样多,那么两队一共修的路就要比4200米少600米,这3600米就相当于甲工程队用15天15=3+62修完的,列式为4200-6003+62=360015=240米240+100=340米解法二:设甲工程队每天修路X米,那么乙工程队每天修路“100米,根据题意,列方程36100=4200
15、解得240从而 100=340米答:甲工程队每天修路240米,乙工程队每天修路340米。说明:“假设是我们解应用题时经常采用的算术方法,它表达了机智、敏捷,能迅速得到答案。此题根据本报第234期第二版“思考题解答一栏中的例题改编而成。2.解:从题目可知,前 30分钟行完总路程的一半,后 20分钟没有把另一半行完,比总路程的一半少2千米。换句话说,后20分钟比前30分钟少行了2000米。为什么会少行呢?原因有两方面:1后20分钟比前30分钟少行10分钟;2后20分钟比前30分钟每分钟多行50米。这样,容易推知前30分钟里每10分钟所行的路程是2050+2000=3000米。前30分钟每分钟行30
16、0010=300米总路程为300302=18000米答:县城到乡办厂之间的总路程为18千米。说明:解此题的关键是:1通过比拟,知道这个人前30分钟比后20分钟多行多少路程;2找出前30分钟比后20分钟多行2000米的原因是什么。详见本报209期?抓住矛盾找原因?一文。3.解法一:设大长方体左右面面积为X平方分米,那么大长方体外表积为10X。切成12个小长方体后,新增加的外表积为322X2=14X12个小长方体外表积之和为1014600252510=250立方分米解法二:把大长方体的外表积看作“1,那么切成12个小长方体后,2552=250立方分米答:这个大长方体的体积为 250立方分米。说明:
17、这道题比拟简单,只要明白把一个几何体切成两局部后,“新增加的外表积等于切面面积的2倍这个关系,不过,在计算新增加外表积时,稍不留心就会弄错。此题根据本报第226期第一版“教你思考栏中的例题改编的。又因为10包+25本+35本11包所以1包60本14+1160=1500本解法二:列方程解那么有 71435 151135 21-2,得3Y70 31+2,得1225Y 436,得1218420 5比拟4、5两式,有2518420解得60122560=1500本答:这批书共有1500本。说明:这道题目里的数量关系其实很容易看出,解法一几乎是心算出结果的。所以,不能把问题想得很复杂。解法二比拟容易想到,
18、但设“未知数也很有讲究,如果设这批书有X本,变形就比拟麻烦了。四、问答题1.答:保证一定获胜的对策是:1先取1粒钮扣,这时还剩1991粒钮扣。2下面轮到对方取,如果对方取n粒1n4,自己就取“5粒,经过398个轮回后,又取出3985=1990粒钮扣,还剩1粒钮扣,这1粒必定留给对方取。说明:此题只是把本报233期“奥林匹克学校栏对策问题的“例1改掉一个字“胜改为“输。一字之差,对策就要改变。我们知道,解对策问题有一个根本思路:把失败输的可能留给对手。此题中,谁取到最后一粒钮扣谁就算输,因而,要想获胜,就必须抢到第1991粒。想到这一点,就容易找到保证获胜的对策了。2.答:剪去的小正方形边长应为
19、4厘米。说明:要答复这道题,可以先到一个表来比拟一下。通过比拟,容易知道剪去的小正方形边长是几厘米时,做成的纸盒容积最大。从上面表中一下子可以看出结果。还可以设被剪去的小正方形边长纸盒的高为h,那么,纸盒底面边长为24-2h。它的容积为因为 24-224-2448定数,根据?数学之友?7第 23页所介绍的结论,当24-24h时,24-2h24-2h4h乘积最大。也就是说,当4时,V最大。3.答:1应选甲铁皮料。2剪法如图17。说明:题中要求选一块铁皮料适合做“成套的铁皮制品,这就要求所选的铁皮料中包含的ab两种毛坯同样多;又因为不能浪费材料,所以,只要算一算数一数甲、乙两块材料中各有多少小正方
20、形,看甲或乙材料中小正方形的总数能不能被10+7=17整除。在答复第2个问题时,可以把ab两块毛坯拼成图18,再根据上面所算出的结果,从中心处向四个方向剪开,就得到4个图18的形状。仔细观察图17,容易发现图中的对称美,这种美也能启发你找到剪裁铁皮的方法。4.答:可以把“1改为“0,也可以把“4改为“3,还可以把“1改为“9,把“2改为“1。说明:此题有四种符合要求的答案,就看你考虑问题是不是全面了。因为225=259,所以要修改后的数能被225整除,就是既能被25整除,又能被 9整除。被25整除不成问题,末两位数75不必修改,只要看前面三个数字。有2+1+4+7+5=19=18+1=27-8,不难排出上面四种答案。5.答:1把9块中的三块各分为两局部:说明:这个分糖的问题很有趣。先得算一算,9块糖平分给4个孩子,因为题中有一句话限制了分的方法,这就是“每块糖至多只能切成两局部。