中考数学二轮专项练习:二次函数与不等式(组)的综合应用.docx

上传人:ge****by 文档编号:89754812 上传时间:2023-05-11 格式:DOCX 页数:12 大小:286.13KB
返回 下载 相关 举报
中考数学二轮专项练习:二次函数与不等式(组)的综合应用.docx_第1页
第1页 / 共12页
中考数学二轮专项练习:二次函数与不等式(组)的综合应用.docx_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《中考数学二轮专项练习:二次函数与不等式(组)的综合应用.docx》由会员分享,可在线阅读,更多相关《中考数学二轮专项练习:二次函数与不等式(组)的综合应用.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 中考数学二轮专项练习:二次函数与不等式(组)的综合应用一、单选题1二次函数y=ax2+bx+c的图象如图所示,则函数值y0时x的取值范围是() Ax1Bx3C1x3Dx1或x32如图是二次函数yx2+2x+4的图象,使y1成立的x的取值范围是() A1x3Bx1Cx1Dx1或x33如图二次函数y=ax2+bx+c的图象与x轴交于( 1,0),(3,0);下列说法正确的是()Aabc1时,y随x值的增大而增大Ca+b+c0D当y0时,1x0b+c=13b+c+6=0当1x3时,x2+(b1)x+c0.其中正确的个数是()A1B2C3D49已知二次函数 y1=ax2+bx+c (a0)与一次函数

2、y2=kx+m(k0)的图象交于点A(2,4),B(8,2),如图所示,则能使y1y2成立的x的取值范围是() Ax2Bx8C2x8Dx2或x810已知y1=a(x+1)2+k1,y2=k2x+b,y3=k3x三个函数图象都经过M(1,3),N(3,1)两点.当x=32时,对应的函数值y1,y2,y3,下列选项正确的是()Ay3y1y2By3y2y1Cy1y2y3Dy1y3y211抛物线y=ax2+bxc上部分的横坐标x,纵坐标y的对应值如下表:x1234y0103由上表可知,下列结论正确的有()a0;抛物线与y轴的交点坐标为(0,3);抛物线的对称轴是直线x=2;当x0,则x的取值范围是1x

3、kx+m 的解集是 . 15如图抛物线y=ax2与反比例函数y=kx交于点C(1,2),不等式ax2kx的解集是 16如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c0的解集是 17如图,直线 y=kx+b 与抛物线 y=x2+2x+3 交于点 A,B ,且点A在y轴上,点B在x轴上,则不等式 x2+2x+3kx+b 的解集为 18不等式x2+ax+b0(a0)的解集为全体实数,假设f(x)=x2+ax+b,若关于x的不等式f(x)c的解集为mxm+6,则实数c的值为 三、综合题19如图,已知抛物线 y=x2+

4、bx+c 与 x 轴交于点 A , B ,且线段 AB=2 ,该抛物线与 y 轴交于点 C ,对称轴为直线 x=2 .(1)求抛物线的函数表达式; (2)根据图象,直接写出不等式 x2+bx+c0 的解集: ; (3)设D为抛物线上一点, E 为对称轴上一点,若以点 A , B , D , E 为顶点的四边形是菱形,则点 D 的坐标为 .20为了创建“全国文明城市”,鄂州市积极主动建设美丽家园,某社区拟将一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草面积为x(m2),种草费用y1(元)与x(m2)的函数关系式为y1= k2x+b(600x1000)k1x(0x600)

5、,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系如表所示: x(m2)100200300y2(元)3900760011100(1)请直接写出y1与种草面积x(m2)的函数关系式,y2与栽花面积x(m2)的函数关系式; (2)设这块1000m2空地的绿化总费用为W(元),请利用W与种草面积x(m2)的函数关系式,求出绿化总费用W的最大值; (3)若种草部分的面积不少于600m2,栽花部分的面积不少于200m2,请求出绿化总费用W的最小值. 212016年里约奥运会,中国跳水队赢得8个项目中的7块金牌,优秀成绩的取得离不开艰辛的训练某跳水运动员在进行跳水训练时,身体(看成一点)在空中

6、的运动路线是如图所示的一条抛物线,已知跳板AB长为2米,跳板距水面CD的高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度k米,现以CD为横轴,CB为纵轴建立直角坐标系 (1)当k=4时,求这条抛物线的解析式; (2)当k=4时,求运动员落水点与点C的距离; (3)图中CE= 194 米,CF= 214 米,若跳水运动员在区域EF内(含点E,F)入水时才能达到训练要求,求k的取值范围 22在平面直角坐标系中,抛物线yx22mx+1(m为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此抛物线的顶点恰好落在x轴的负半轴时,求此抛物线所对应的二次函数的表达式,并写出函数

7、值y随x的增大而增大时x的取值范围.(3)当x32m时,若函数yx22mx+1(m为常数)的最小值12,求m的值.(4)已知RtEFG三个顶点的坐标分别为E(m,m)、F(0,m),G(m,m10)若|m|x2+bx+c的解集24已知二次函数y=x24x+3(1)求函数图象的对称轴、顶点坐标、与坐标轴交点的坐标,并画出函数的大致图象;(2)根据图象直接写出函数值y为负数时,自变量x的取值范围答案解析部分1【答案】C2【答案】A3【答案】B4【答案】B5【答案】B6【答案】B7【答案】D8【答案】C9【答案】D10【答案】B11【答案】C12【答案】D13【答案】2x914【答案】-3x015【

8、答案】x1或x016【答案】x1或x317【答案】0x318【答案】919【答案】(1)解:如图,AB2,对称轴为直线x2. 点A的坐标是(1,0),点B的坐标是(3,0). 把A、B两点的坐标代入得: 1+b+c09+3b+c0 ,解得: b4c3 ,抛物线的函数表达式为yx24x3(2)x1或x3(3)(2,-1)20【答案】(1)解: y1= 30x(0x600)20x+6000(600x1000) ,y2=-0.01x2+40x; (2)当0x600时,W=y1+y2=30x+-0.01(1000-x)2+40(1000-x) =-0.01x2+10x+30000=-0.01(x-50

9、0)2+32500-0.010,x=500时,w有最大值32500.当600x1000时,w=y1+y2=20x+6000+-0.01(1000-x)2+40(1000-x)=-0.01x2+36000,-0.010,当600x1000时,w随x的增大而减小,当x=600时,w有最大值32400,综上所述,绿化总费用W的最大值为32500元.(3)由题意: 1000x200x600 ,解得600x800, 600x800时,w=-0.01x2+36000,w随x的增大而减小,x=800时,w有最小值29600元.21【答案】(1)解:如图所示: 根据题意,可得抛物线顶点坐标M(3,4),A(2

10、,3)设抛物线解析为:y=a(x3)2+4,则3=a(23)2+4,解得:a=1,故抛物线解析式为:y=(x3)2+4(2)解:由题意可得:当y=0,则0=(x3)2+4, 解得:x1=1,x2=5,故抛物线与x轴交点为:(5,0),当k=4时,求运动员落水点与点C的距离为5米(3)解:根据题意,抛物线解析式为:y=a(x3)2+k, 将点A(2,3)代入可得:a+k=3,即a=3k若跳水运动员在区域EF内(含点E,F)入水,则当x= 194 时,y= 4916 a+k0,即 4916 (3k)+k0,解得:k 4911 ,当x= 214 时,y= 8116 a+k0,即 8116 (3k)+

11、k0,解得:k 24365 ,故 24365 k 491122【答案】(1)解: 抛物线yx22mx+1(m为常数)的图象与y轴交于点A,另x=0,则y=1点A的坐标是(0,1)(2)解:另y=0,则 x22mx+1=0, 抛物线的顶点恰好落在x轴的负半轴,=b2-4ac=(-2m)2-411=0,即m=1, 又x= b2a=2m2=m0,m=-1 则此抛物线所对应的二次函数的表达式为 yx2+2x+1, 由于该抛物线开口向上,对称轴为直线x=-1, 函数值y随x的增大而增大时x的取值范围为x-1(3)解: 抛物线yx22mx+1=(x-m)2+1-m2该抛物线的对称轴为直线x=m,顶点坐标为

12、(m,1-m2) 当x32m时,若函数yx22mx+1(m为常数)的最小值12,分两种情况: 若m0,则1-m2=12,解得m=22或m=-22(舍去); 若m0,则当x=32m,y=(32m)2-2m32m+1=12,解得m=63(舍去)或m=-63 综上可知, m的值为22或-63。(4)m=-2或m=2323【答案】(1)解:抛物线y=x2+bx+c与x轴交于A(3,0),B(1,0)93b+c=01+b+c=0解得b=2c=3y=x2+2x3 (2)2x124【答案】(1)解:y=x24x+3=(x2)21.对称轴为直线x=2,顶点为(2,1),与x轴交点为(1,0)和(3,0),图象为: 。(2)解:由图象得:当y0时,1x3. 学科网(北京)股份有限公司

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁