华师大版七年级数学下册教案(全册).pdf

上传人:无*** 文档编号:89627925 上传时间:2023-05-06 格式:PDF 页数:188 大小:16.71MB
返回 下载 相关 举报
华师大版七年级数学下册教案(全册).pdf_第1页
第1页 / 共188页
华师大版七年级数学下册教案(全册).pdf_第2页
第2页 / 共188页
点击查看更多>>
资源描述

《华师大版七年级数学下册教案(全册).pdf》由会员分享,可在线阅读,更多相关《华师大版七年级数学下册教案(全册).pdf(188页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第 6 章 一元一次方程6.1 从实际问题到方程教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用.2.使学生会列一元一次方程解决一些简单的应用题.3.会判断一个数是不是某个方程的解。重点、难点1.重点:会列一元一次方程解决一些简单的应用题。2.难点:弄清题意,找 出“相等关系”。教学过程一、复习提问小学里已经学过列方程解简单的应用题,我们回顾一下,如何列方程解应用题?例如:一本笔记本L 2 元.小 红 有 6 元钱,那她最多能买到几本这样的笔记本呢?解:设小红能买到工本笔记本,那么根据题意,得1.2x=6因为1.2 x 5=6,所以小红能买到5 本笔记

2、本。二、新授:我们再来看下面一个例子:问 题 1:某校初中一年级328名师生乘车外出春游,已有2 辆校车可以乘坐64人,还需租用44座的客车多少辆?问:你能解决这个问题吗?有哪些方法?(让学生思考后,回答,教师再作讲评)算术法:(328-64)44-264 4 4-6 (辆)列方程解应用题:设需要租用x 辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。44x+64=328(1)解这个方程,就能得到所求的结果。问:你会解这个方程吗?试试看?(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)问题2:在课外活动中,张老师发现

3、同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”小敏同学很快说出了答案.“三年”。他是这样算的:1 年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。2 年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。3 年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。你能否用方程的方法来解呢?通过分析,列出方程:13+x=-(45+x)(2)3问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?这个方程不像例1 中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程的解。也就是只栗将x=

4、l,2,3,4,代人方程的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。把 x=3 代人方程(2),左边=13+3=1 6,右边=(45+3)=x 48=16,因为左边=右边,所以X =3 就是这个方程的解。这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。问:若把例2 中 的“三分之一”改 为“二分之一”,那么答案是多少?同学们动手试一试,大家发现了什么问题?同样,用检验的方法也彳即噌得到方程的解,因为这里x 的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?这正是我们本章要解决的问题.三、巩

5、固练习1.教科书第3 页练习1、2。2.补充练习:检验下列各括号内的数是不是它前面方程的解。(1)x-3(x+2)=6+x(x=3,x=-4)(2)2y(y-1)=3(y=-1,y=2)(3)5(x-1)(x-2)=0(x=0,x=1,x=2)四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。五、作业。教科书第3 页,习题6.1 第 1、3题。6.2 解一元一次方程1.方程的简单变形教学目的通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。重点、难点1.重点:方程的两种变形.2.难点:由具体实例

6、抽象出方程的两种变形.教学过程一、引入上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a 形式,本节课,我们将学习如何将方程变形.二、新授让我们先做个实验,拿出预先准备好的天平和若干祛码。测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上硅码,当天平处于平衡状态时,显然两边的质量相等。如果我们在两盘内同时加入相同质量的祛码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的祛码,天平仍然平衡。如果把天平看成一个方程,课本第4 页上的图,你能从天平上祛码的变化联想到方程的变形吗?让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大

7、祛码和2 个小祛码,右盘上有5 个小祛码,天平平衡,表示左右两盘的质量相等。如果我们用x 表示大祛码的质量,1表示小硅码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。问:图 6.2.1 右边的天平内的祛码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5 变形得到的?学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?让同学们看图6.2.2.左天平两盘内的祛码的质量关系可用方程表示为3x=2x+2,右边的天平内的祛码是怎样由左边天平变化而来的?把天平两边都拿去2 个大

8、祛码,相当于把方程3x=2x+2两边都减去2 x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?由图6.2.1 和 6.2.2 可归结为;方程两边都加上或都减去同一个数或同一个整式,方程的解不变。让学生观察(3),由学生自己得出方程的第二个变形。即方程两边都乘以或除以同一个不为零的数,方程的解不变:通过对方程进行适当的变形.可以求得方程的解。例 1.解下列方程(1)x-5=7(2)4x=3x-4解:两 边 都 加 上 5,得 x=7+5 即 x=12(2)两边都减去3 x,得 x=3 x-4-3 x 即 x=-4请同学们分别将x=7+5与原方程x-5=7;*=3*-4-3 与原方程4*=

9、3*-4 比较,你发现了这些方程的变形。有什么共同特点?这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。注意:移项 是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项.例 2.解下列方程3 1(1)-5x=2(2)-x=-2 3这里的变形通常称为“将未知数的系数化为以上两个例题都是对方程进行适当的变形,得到x=a 的形式。练习:课本第6 页练习1、2、3.练习中的第3题,即第2 页中的方程先让学生讨论、交流.鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种

10、方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。三、巩固练习教科书第7 页,练习四、小结本节课我们通过天平实验,得出方程的两种变形:1.把方程两边都加上或减去同一个数或整式方程的解不变。2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别.五、作业教科书第78 页习题6.2.1第 1、2、3。6.2、解一元一次方程第一课时教学目的1.了解一元一次方程的概念。2.掌握含有括号的一元一次方程的解法。重点、难点1.重点;解含有括号的一元一次方程的解法。2.难点;括号前面是负号时,

11、去括号时忘记变号。教学过程一、复习提问1.解下列方程:(1)5x-2=8(2)5+2x=4x2.去括号法则是什么?“移项”栗注意什么?二、新授一元一次方程的概念前面我们遇到的一些方程,例 如 44x+64=328 3+x=(45+x)y-5=2 y+l问:大家观察这些方程,它们有什么共同特征?(提示:观察未知数的个数和未知数的次数。)只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。例 1.判断下列哪些是一元一次方程x=3x-2 x-3=-15x2-3x+l=02x+y=1-3y=5下面我们再一起来解几个一元一次方程。例 2.解 方 程(1)-2(x

12、-1)=4(2)3(x-2)+1=x-(2x-1)方程该怎样解?由学生独立探索解法,并互相交流此方程既可以先去括号求解,也可以看作关于(x-1)的一元一次方程进行求解。第题可由学生自己完成后讲评,讲评时,强调去括号时把括号外的因数分别乘以括号内的每一项,若 括 号 前 面 是 号,注意去掉括号,要改变括号内的每一项的符号。补充例题:解方程3x-3(x+1)-(1+4)-1方程中有多重括号,你会解这个方程吗?说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。三、巩固练习教科书第9页,练习,1、2、3。四、小结本节课我们学习

13、了一元一次方程的概念,并学习了含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号.五、作业教科书第12页习题6.2,2第1题。第二课时教学目的:使学生掌握去分母解方程的方法,并从中体会到转化的思想。对于求解较复杂的方程,要注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯.重点、难点1、重点:掌握去分母解方程的方法。2、难点:求各分母的最小公倍数,去分母时,有时要添括号.教学过程一、复习提问1.去括号和添括号法则。2.求几个数的最小公倍数的方法。二、新授例1:解方程x-3 2x+1 4-=123分析:如何解这个方程呢?此方程可改写成3(x-3)

14、-2(2x+l),-=16所以可以去括号解这个方程,先让学生自己解。同学们,想一想还有其他方法吗?能否把方程变形成没有分母的一元一次方程,这样,我们就可以用已学过的方法解它了。解法二;把方程两边都乘以6,去分母。比较两种解法,可知解法二简便。想一想,解一元一次方程有哪些步骤?先让学生自己总结,然后互相交流,得出结论。解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为 1等步骤,把一个一元一次方程“转化”成 x =a的形式。解题时,要灵活运用这些步骤。补充例2:解方程 巨 纹=-2二5 2 3问:如果先去分母,方程两边应同乘以一个什么数?应乘以各分母的最小公倍数,5、2

15、、3 的最小公倍数。三、巩固练习教科书第1 0 页,练 习 1、2.(练 习 第 1题是辨析题,引导学生进行分析、讨论,帮助学生在实践中自我认识和纠正解题中的错误)四、小结1 .解一元一次方程有哪些步骤?2 .同学们要灵活运用这些解法步骤,掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。五、作业教科书第1 2 页习题6.2.2 第 2 题。第三课时教学目的:理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。重点、难点1、重点:弄清

16、应用题题意列出方程。2、难点:弄清应用题题意列出方程。教学过程一、复习1、什么叫一元一次方程?2、解一元一次方程的理论根据是什么?二、新授。例 1、如 图 6.2.4(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A 内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。分析:设应从A盘内拿出盐x,可列表帮助分析。等量关系;A盘现有盐=3 盘现有盐完成后,可让学生反思,检验所求出的解是否合理。(盘 A现有盐为51-3=4 8,盘 B现有盐为45+3=

17、4 8.)培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.例2.学校团委组织65名团员为学校建花坛搬转,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了 400块,问初一同学有多少人参加了搬砖?引导学生弄清题意,疏理已知量和未知量:1.题目中有哪些已知量?(1)参加搬砖的初一同学和其他年级同学共65名.(2)初一同学每人搬6块,其他年级同学每人搬8块.初一和其他年级同学一共搬了 400块.2.求什么?初一同学有多少人参加搬砖?3.等量关系是什么?初一同学搬砖的块数十其他年级同学的搬砖数=400如果设初一同学有工人参加搬砖,那么由已知量可得,其他年级同学有(65-x)人参加搬砖

18、;再由已知量和等量关系可列出方程6x+8(65-x)=400也可以按照教科书上的列表法分析三、巩固练习教科书第11页练习1、2、3第1题:可引导学生画线图分析等量关系是:AC十C B =400若设小刚在冲刺阶段花了 x秒,即tl=x秒,贝4 t2(65-x)秒,再由等量关系就可列出方程:6(65-x)+8x=400四、小结本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未

19、知数的值,并检验是否合理。最后写出答案.五、作业教科书第12页习题6.2.2 第 3、4、5、6 题。6.3 实践与探索第一课时教学目的让学生通过独立思考,积极探索,从而发现;围成的长方形的长和宽在发生变化,但在围的过程中,长方形的周长不变,由此便可建立“等量关系”同时根据计算,发现随着长方形长与宽的变化,长方形的面积也发生变化,且长方形的长与宽越接近时,面积越大。通过问题3 的教学,让学生初步体会数形结合思想的作用。重点、难点1.重点:通过分析图形问题中的数量关系,建立方程解决问题。2.难点:找 出“等量关系”列出方程。教学过程一、复习提问1.列一元一次方程解应用题的步骤是什么?2.长方形的

20、周长公式、面积公式。二、新授问题1.用一根长60厘米的铁丝围成一个长方形。使长方形的宽是长的专,求这个长方影的长和宽。(2)使长方形的宽比长少4 厘米,求这个长方形的面积.(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?让学生独立探索解法,并互相交流。第小题一般能由学生独立或合作完成,教师也可提示:与几何图形有关的实际问题,可画出图形,在图上标注相关量的代数式,借助直观形象有助于分析和发现数量关系.分析:由题意知,长方形的周长始终不变,长与宽的和为60。2=30(厘米),解决这个问题时,要抓住这个等量关系。第小题的设元,可让学生尝试、讨论,对学生所得到的结论都应给

21、予鼓励,在讨论交流的基础上,使学生知道,不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。(3)当长方形的长为18厘米,宽为12厘米时长方形的面积=18x12=216(平方厘米)当长方形的长为17厘米,宽为13厘米时长方形的面积=221(平方厘米)(1)中的长方形面积比中的长方形面积小。问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把中的宽比长 少“4 厘米”改 为 3 厘米、2 厘米、1 厘米、0.5 厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。通过计算,发现随着长方形长与

22、宽的变化,长方形的面积也发生变化,并且长和宽的差越小,长方形的面积越大,当长和宽相等,即成正方形时面积最大.实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。三、巩固练习教科书第14页练习1、2.第1题,组织学生讨论,寻找本题的“等量关系”。用一块橡皮泥捏出的各种形状的物体,它的体积是不变的。因此等量关系是:圆柱的体积=长方体的体积。第2题,先让学生根据生活经验,开展讨论,解这道题的关键是什么?题中的等量关系是什么?通过思考,使学生明确要解决“能否完全装下”这个问题,实质是比校这两个容器的容积大小,因此只要分别计算这两个容器的容积,结果发现装

23、不下,接着研究第2个问题,“那么瓶内水面还有多高”呢?如果设瓶内水面还有x厘米高,那么这里的等量关系是什么?等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。从而列出方程四、小结本节课同学们认真思考,积极探索,通过分析图形问题中的数量关系,建立方程解决问题,进一步体会到运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,同学们要联系实际,积极探索,找出等量关系.五、作业教科书第15页,习题6.3.1第1、2、3。第二课时教学目的通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模型.

24、重点、难点1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程.2.难点:找出能表示整个题意的等量关系。教学过程一、复习1.储蓄中的利息、本金、利率、本利和等含义,它们之间的数量关系 利息=本金 X 年 利 率 X年数本利和=本金X利息X年数+本金2.商品利润等有关知识.利润=售价-成本=商品利润率二、新授在本章6.1 练习中讨论过的教育储蓄,是我国目前暂不征收利息税的储种,国家对其他储蓄所产生的利息征收20%的个人所得税,即利息税。今天我们来探索一般的储蓄问题。问 题 2、小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值4 8

25、.6 元的计算器,问小明爸爸前年存了多少元?先让学生思考,试着列出方程,对有困难的学生,教师可引导他们进行分析,找出等量关系。利息-利息税=48.6可设小明爸爸前年存了x 元,那么二年后共得利息为2.43%xXx 2,利息税为 2.43%XX2X20%根据等量关系,得 2.43%x 2-2.43%xx2x20%=48.6问,扣除利息的20%,那么实际得到的利息是多少?你能否列出较简单的方程?扣除利息的2 0%,实际得到利息的8 0%,因此可得2.43%x-2-80%=48.6解方程,得 x=1250例 1.一家商店将某种服装按成本价提高40%后标价,又以8 折(即按标价的80%)优惠卖出,结果

26、每件仍获利15元,那么这种服装每件的成本是多少元?大家想一想这15元的利润是怎么来的?标价的80%(即售价)-成 本=15若设这种服装每件的成本是x 元,那么每件服装的标价为:(1+40%)x每件服装的实际售价为:(l+40%)x80%每件服装的利润为:(l+40%)x 80%-x由等量关系,列出方程:(l+40%)x 80%-x =15解方程,得 x=125答:每件服装的成本是125元.三、巩固练习教科书第15页,练 习 1、2。四、小结本节课我们利用一元一次方程解决有关储蓄、商品利润等实际问题,当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关

27、系,并由此列出方程;求出所列方程的解;检验解的合理性.应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。五、作业:教科书第16页,习题6.3.1,第 3、4、5 题。第三课时教学目的1.使学生理解用一元一次方程解工程问题的本质规律;通 过 对“工 程问题”的分析进一步培养学生用代数方法解决实际问题的能力。2.使学生在自主探索与合作交流的过程中理解和掌握基本的数学知 识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。重点、难点重点:工程中的工作量、工作的效率和工作时间的关系。难点:把全部工作量看作“1”。教学过程一、复习提问1.一件工作,如果甲单独做2 小时完

28、成,那么甲独做I 小时完成全部工作量的多少?2.一件工作,如果甲单独做a小时完成,那么甲独做1小时,完成全部工作量的多少?3.工作量、工作效率、工作时间之间有怎样的关系?二、新授让学生阅读教科书第19页中的问题,分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?小刘提出什么问题?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天.小刘提出的问题是:两人合作需要几天完成?2.怎样用列方程解决这个问题?本题中的等量关系是什么?等量关系是:师傅做的工作量+徒弟做的工作量=1若设两人合作需要x天完成,那么甲、乙分别做了几天?甲、乙的工作效率是多少?本题中工作总量没有告诉,

29、我们把它看成“1”,根 据 等 量 关 系 可 得 方 程.(略)3.你还能提出什么问题?试试看,并解答这些问题。让学生充分思考,大胆提出问题,互相交流,对于合理的问题,让大家共同解答,对于不合理的问题,让大家探讨为什么不合理?应改为怎样提?4.李老师把两位同学的问题,合起来后,已知条件增加了什么?求什么?“徒弟先做1天”,也就是说徒弟比师傅多做1天5.要解决本题提出的问题,应先求什么?先要求出师傅与徒弟各完成的工作量是多少?两人的工效已知,因此栗先求他们各自所做的天数,因此,设师傅做了 x天,则徒弟做(x+1)天,根据等量关系,列 方 程(略)解方程得 x=2师傅完成的工作量为(略),徒弟完

30、成的工作量为(略)所以他们两人完成的工作量相同,因此每人各得225元.三、巩固练习一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;请你提出问题,并加以解答。例如(1)剩下的乙独做要几小时完成?(2)剩下的由甲、乙合作,还需多少小时完成?(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?四、小结1.本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即工作量=工作效率x工作时间工作效率=工作量/工作时间 工作时间=工作量/工作效率2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。五、作业:教科书习题6.3.2

31、第1、2、3题。第六章小结与复习(一)2课时学习目标:1.准确地理解一元一次方程的解题步骤;2.熟练地掌握一元一次方程的解法;3.能熟练地解一元一次方程.4.在查漏补缺的过程中培养学生自我发现、自我归纳、善于分析、勇于探索的能力,循序渐进,激发学生求知欲,增强学生自信心,复习重点:复习巩固解一元一次方程解法步骤和解题思想。复习难点:能够熟练准确地解一元一次方程过程与方法:1、以点拨一一精讲一一精练的模式,完善知识的结构。2、引导学生进行分析、归纳总结。复习过程:一、知识点回顾:一兀一次方程的应用1、方程的定义:2、等式的定义和等式的基本性质3、一元一次方程的定义4、解一元一次方程的步骤二、练习

32、跟踪A组1、下列四个式子中,是方程是()A.1+2+3+4=10 B.2x-3 C.x=1D.|0.5|=0.52、.下列方程中是一元一次方程的是()1,1A x-1 -x-3 B x -2y=0 C x2=0 D +3=x2x3、下列结论不正确的是()A 已知a=b,则/=/B 已知a=b,加为任意有理数,则=C已知,na=mb,加为任意有理数,则。=b D 已知ax=b,且 a 工0,则 x=a三、解一元一次方程有哪些基本步骤?(学生自主完成)复习巩固(分步练习)由学生先做,后总结注意点,最后教师点评1 .去分母 方程 在 里-山 口 =1去分母后,得到:_ _ _ _ _ _3 62 .

33、去括号 将方程2x-3(4 -2 x)=5去括号正确的是()A.2 x 1 2 6 x-5 B.2 x 1 2 2 x 5 C.2x 一 3 +6 x 5D.2 x-1 2 +6 x=53.移项 将方程2 x 5 =3 x+9移项后,得到:4.合并同类项下列方程合并同类项不正确的是()A.由3 x 2 x=4,合并同类项,得x=4.B.由2 x 3 x=3,合并同类项,得 x=3C.由一8 x 2 x+4 x=1 2,合并同类项,得一2 x=1 2D.由7 x+2 x=5,合并同类项,得 5 x=55 .系数化为1下列等式变形中,正确的是()3A.若 8 x=4 ,则 x 2 B.若 3 x=

34、7,则 x=73 2 5C.若 x=,则 x=-l D.若-6 x=-5,则 x=2 3 6归纳步骤具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数1.不要漏乘不含分母的项2.分子是多项式时,必须加括号去括号用括号前的因数去乘括号里的每一项不要漏乘括号中的每一项,注意变号移项把含有未知数的项移到方程一边,其它项移到方程另一边,注意移项要变号1.移动的项要变号,不移的项不变号2.不要漏项合并同类项系数相加,字母与字母的指数不变1.把系数相加2.字母和字母的指数不变系数化为1将方程两边同时除以未知数系数分清除数与被除数,分子分母不要颠倒位置A、3x _ 1 4x 1四.例题:解万程:-=1

35、-3 6解:去分母,得:2(3x l)=6-(4x 1)-不要漏乘不含分母的项去括号,得:6x-2=6-4x+1-不要漏乘括号中的每一项,注意变号移项,得:6x+4x=6+l+2-移动的项要变号,不移的项不变号;不要漏项合并同类项,得:10 x=9-系数相加,字母部分不变9系数化为1,得:x=-分清除数与被除数,分子分母不要颠倒位置10五.复习巩固(同步练习)1.小显身手:2方程2x+6=0的解是;方程一X 1 =5的解是3现将方程3 x=7 +2 x进行移项变形,正确的是()A.3 x=7 +2 x-*3 x-2 x=7 B.3 x=7 +2 x 3 x+2 x=7C.3 x=7 +2 x

36、3x-2x=-7 D.3 x=7 +2 x-3 x+2 x=-7将方程2元3(4-2 x)=5去括号,正确的是()A.2 x-1 2-6 x=5 B.2 x-1 2 -2 x=5 C.2 x-3 +6 x=5 D.2 x-1 2 4-6 x=5I r-5方程一%-上 上=1,去分母得()2 3A.3 x 2 x+1 0 =1 B.3 x 2 x-1 0 =l C 3 x-2 x 1 0 =6 D.3 x-2 x+1 0 =6下面是从小明同学作业本摘抄的内容,请 你 找 出 其 中 正 确 的 是()A.方 程 生 丑 也 1 =1,去分母,得2(2 x+l)-(l O x+1)=1.3 6B.

37、解方程:8 x-2 x=-12,6 x=-1 2 =x=-2.C.方程 2 (x+3)-5 (1 -x)=3 (x-1),去括号,得 2 x+3 -5 -5 x=3 x-3.4D.方 程9 x=-4,系数化为1,得=.92.再显身手:解下列方程:2 Y _L 5 3 V -5 3 x+2 0 =4 x-2 5 (x+1)-1 0 =2(4 x-l)二 (x=45 x=-1 x=5)生 _(3T)=3 _ 2 -2x)L l Z =3 5 2 2 3 3 4(x=5 x=3 y=-2)六.小结:解一元一次方程的一般步骤七,作业 6%+1 0 =1 7 -x-3%-1.2 =7.6 +1.4%一

38、2(x+l)3 =g(4 x 1)|(x +1 5)=|-1(x-7)x-3x+40.2=1.6小结与复习(三)教学目的使学生进一步能以一元一次方程为工具解决一些简单的实际问题,能借助图表整体把握和分析题意,从多角度思考问题,寻找等量关系,恰当地转化和分析量与量之间的关系,提高学生运用方程解决实际问题的能力。重点、难点1.重点:运用方程解决实际问题。2.难点:寻找等量关系,间接设元.教学过程一、复习列一元一次方程解应用题的步骤。二、新授例 1.为了准备小勇6 年后上大学的学费5000元,他的父母现在就参加了教育储蓄,下面有两种储蓄方式。(1)直接存一个6 年期,年利率是2.88%;(2)先存一

39、个3 年期的,3 年后将本利和自动转存一个3 年期。3 年期的年利率是2.7%.你认为哪种储蓄方式开始存入的本金比较少?例 2.解答下列各问题:某地生产的一种绿色蔬菜,在市场上直接销售,每吨利润为1000元,经粗加工后销售每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。当地一家公司收购这种蔬菜140吨,该公司的加工能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6 吨,但两种加工方法不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕。为此,公司研制了三种可行方案。方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行

40、精加工,没来得及进行加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成。你认为选择哪种方案获利最多?三、巩固练习1.某班将买一些兵乓球和兵乓球拍,现了解情况如下:甲乙两家商店出售两种同样品牌的兵乓球和球拍。兵乓球每副定价30元,兵乓球每盒定价5 元,经洽谈,甲店每买一副球拍赠一盒兵乓球。乙店全部按定价的9 折优惠。该班需球拍5 副,兵乓球若干盒(不小于5 盒)。问:(1)当购买兵乓球多少盒时两种优惠办法付款一样?(2)当 购 买 1 5 盒、30盒兵乓球求时,请你去办事,你打算去哪家商店购买?为什么?2.水源透支令人担忧,节约用水迫在眉睫,针对

41、居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3 元,超标部分每立方米水费2.9 元,某住楼房的三口之家某月用水12立方米,交 水 费 22元,请你通过列方程求出北京市规定三口之家楼房每月标准用水量是多少立方米?3.爸爸为小明存了一个3 年期的教育储蓄(3 年期的年利率为2.7%),3 年后能取5405元,他开始存入了多少元?4.一收割机收割一块麦田,上午收了麦田的2 5%,下午收割了剩下麦田的20%,结果还 剩 6 公顷麦田未收割,这块麦田一共有多少公顷?四、小结本节课我们复习了利用一元一次方程解决实际问题,方程是

42、刻画现实世界的有效数学模型,列方程解实际问题的关键是找到“等量关系”,在寻找等量关系时可以借助图表等,在得到方程的解后,要检匿它是否符合实际意义.五、作业:教科书第复习题A组 第 3、4、5、6、7、8,B组 11、12选 做 C组 15、16.第七章二元一次方程组7.1 二元一次方程组和它的解教学目的1.使学生了解二元一次方程,二元一次方程组的概念。2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。3 .通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。重点、难点1 .重点:了解二元一次方程。二元一次方程组以及二元一

43、次方程组的解的含义,会检验一对数是否是某个二元一次方程组的解。2 .难点;了解二元一次方程组的解的含义。教学过程一、复习提问1 .什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?2 .列方程解应用题的步骤。二、新授问 题 1:暑假里,新晚报组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛9 场,得 1 7 分.比赛规定胜一场得3 分,平一场得1 分,负一场得。分,勇士队在这一轮中只负了 2场,那么这个队胜了几场?又平了几场呢?这个问题可以用算术方法来解,也可以列一元一次方程来解,请同学们选一种方法试一试。解后反思:既然是求两个未知量,那么能不能同时设两

44、个未知数?学生尝试设勇士队胜了 x场,平了 y场。让学生在空格中填入数字或式子:(略)(见教科书)那么根据填表结果可知x+y=73x+y=17这两个方程有什么共同的特点?(都含有两个未知数,且含未知数的项的次数都是1)这里的x、y 要同时满足两个条件:一个是胜与平的场数和是7 场;另一个是这些场次的得分一共是17分,也就是说,两个未知数x、y必须同时满足方程、.因此,把两个方程合在一起,并写成x+y=7 3x+y=17 上面,列出的两个方程与一元一次方程不同,每个方程都有两个未知数,并且未知数的次数都是1,像这样的方程,叫做二元一次方程.把这两个二元一次方程、合在一起,就组成了一个二元一次方程

45、组。结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。用算术方法或通过列一元一次方程都可以求得勇士队胜了 5 场,平了 2 场,即 x=5,y=2这里的x=5,与 y=2既满足方程即 5+2=7又满足方程,即3x5+2=17我们就说x=5 与 y=2 是二元一次方程组的解。一般地,使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。二元一次方程组的解的检验范例。三、巩固练习1.教科书第25页问题2.2.补充练习。四、小结1.什么是二元一次方程,什么是二元一次方程组?2.什么是二

46、元一次方程组的解?如何检验一对数是不是某个方程组的解?五、作业教科书第26页 习 题 7.1 全部.7.2 二元一次方程组的解法第一课时教学目的1.使学生通过探索,逐步发现解方程组的基本思想是“消元”,化二元一一次方程组为一元一次方程。2.使学生了解“代人消元法”,并掌握直接代入消元法。3.通过代入消元,使学生初步理解把“未知”转 化 为“已知”,和复杂问题转化为简单问题的思想方法。重点、难点1.重点;用代入法把二元一次方程组转化为一元一次方程。2.难点:用代入法求出一个未知数值后,把它代入哪个方程求另一个未知数值较简便。教学过程一、复习1.什么叫二元一次方程,二元一次方程组,二元一次方程组的

47、解?2.把 3x+y=7 改写成用x 的代数式表示y 的形式。二、新授回顾上一节课的问题2。在问题2 中,如果设应拆除旧校舍xm 2,建新校舍ym 2,那么根据题意可列出方程组。y-x=20000 x 30%y=4x怎样求这个二元一次方程组的解呢?方程表明,可以把y 看 作 4 x,因此,方程中的y 也可以看着4 x,即将代人(得到一元一次方程,实际上此方程就是设应拆除旧校舍xm 2,所列的一元一次方程).这样就二元转化为一元,把“未知”转 化 为“已知”。你能用同样的方法来解问题1中的二元一次方程组吗?让学生自己概括上面解法的思路,然后试着解方程组。对有困难的同学,教师加以引导。并总结出解方

48、程的步骤.1.选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程。2.把代人另一个方程,得一元一次方程。3.解这个一元一次方程,得一个未知数的值。4.把这个未知数的值代人,求出另一个未知数值,从而得到方程组的解。以上解法是通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的,这种解法叫做代人消元法,简称代入法.三、巩固练习教科书第29页,练习。四、小结1.解二元一次方程组的思路。2.掌握代入消元法解二元一次方程组的一般步骤。五、作业1.教科书第34页习题7.2 题 第 1 题。第二课时教学目的1 .使学生进一步理解代人消元法的基本思想和代入法解题的一般步骤。2 .让学生在实践

49、中去体会根据方程组未知数系数的特点,选择较为合理、简单的表示方法,将一个未知数表示另一个未知数.重点、难点1.重点:熟练地用代人法解一般形式的二元一次方程组。2 .难点:准确地把二元一次方程组转化为一元一次方程。教学过程一、复习1.方 程 组 2 x+5 y=-2 如何求解?关键是什么?解题步骤是什么?x=8-3 y2 .把方程2 x-7 y =8 (1)写成用含x的代数式表示y的形式。(2)写成用含y的代数式表示 x的形式。二、新授2 x-7 y=8 例:解 方 程 3 x-8 y-10=0 分析:这两个方程中未知数的系数都不是1,那么如何求解呢?消哪一个未知数呢?如果将写成用一个未知数来表

50、示另一个未知数,那么用x 表 示 y,还是用y 表 示 x好呢?(让学生自己探索、归纳)因为X的系数为正数,且系数也较小,所以应用y来表示X较好。尝试解答。教师板书解方程的过程。这里是消去x,得关于y的一元二次方程,能否消去y呢?让学生试一试,然后通过比较,使学生明白本题消x较简单。三、巩固练习教 科 书 第 页,练 习1、2 (1)(2)四、小结对于一般形式的二元一次方程用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错,选取的原则是:1.选择未知数的系数是1或-1的方程;2 .若未知数的系数都不是1或-1,选系数的绝对值较小的方程,将要消的元用含另一个

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁