《2022圆锥的体积教学设计.pdf》由会员分享,可在线阅读,更多相关《2022圆锥的体积教学设计.pdf(85页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022圆锥的体积教学设计圆锥的体积教学设计作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。怎样写教学设计才更能起到其作用呢?以下是我收集整理的圆锥的体积教学设计,希望对大家有所帮助。圆锥的体积教学设计1教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进
2、行教学的,教材重视类比,转化思想的渗透,直观引导学生经历”猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。2、过程与方法:通 过“直觉猜想一一试验探索一一合作交流一一得出结论一一实践运用”探
3、索过程,获得圆锥体积的推导过程和学习的方法。3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。教法学法:试验探究法小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水 槽6个(装有适量的水)教 学 课 时1
4、课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。二、创设情景激发激情展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?设计意图以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)三、试验探究合作学习(探讨圆柱与圆锥体积之间的关系)探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?1、猜想:猜想它们的底、高之间各有什么关系?2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结
5、论)4、教师介绍数学专用名词:等底等高设计意图通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?1、大胆猜想:等底等高圆柱与圆锥体积之间的关系2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)3、小组汇报试验结论(提醒学生汇报出试验步骤)教学预设:(1)圆椎的体积是圆柱体积的3倍;(2)圆锥的体积是圆柱体积的三分之一;(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。4、通过学生汇报
6、的试验结论,分析归纳总结试验结论。5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)设计意图通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。探究三:(伸展试验-演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?3、学生通过观看试验汇报结论。4、教师引导学生分析归纳总结圆锥体
7、积是圆柱体积的三分之一所存在的条件。5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。设计意图通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。四、实践运用提升技能1、判断题:题目内容见多媒体展示独立思考-一抽生汇报-一说明理由-师生评议2、口答题:题目内容见多媒体展示独立思考-一抽生汇报-学生评议3、拓展运用:课本例题3 学生分析题意-一小组合作解答-学生解答展示-师生评议设计意图通过判断题、口答题题型的训练,及
8、时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。五、谈谈收获:这节课你学到了什么呢?六、课堂作业:1、做在书上作业:练 习 四 第4、7题2、坐在作业本上作业:练 习 四 第3题圆锥的体积教学设计2教学内容:圆锥的体积是九年义务教育六年制小学数学第十一册第三单元的内容。教学目标:1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=l/3 s h是最简便的方法。2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。3、培养学生的
9、合作意识及主动探索知识的精神。教学重点:让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=l/3 s h,并感受到计算公式的简便。教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。教学准备:1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。2、教学软件。教学流程:一、创设情景,激趣引新。1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)2、教师表示赞同,并抓住这一契机拿出
10、于刚才圆柱等底等高的圆锥,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。二、小组合作,探究学习。1、动手操作,测量圆锥体的体积。要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场
11、面。3、分组汇报不同的方法。学生在汇报时可边讲解边示范方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。方法二:利用手中的一立方厘米的小木块进行估算。方法三:受 曹冲称象的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了 3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=l/3 s h 设计意图:通
12、过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。(1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?(2)学生再次在小组内操作探究。(3)汇报结论。(4)微机演示。当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。4、评价以上各种办法同学们的结论是用公式计算比较方便。三、解决实际问题(问题一)1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要
13、保留整数)2、汇报结果。先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:l/3 x 3.1 4 x(1 0/2)x 1 0 弋2 6 2 立方厘米(忽略厚度,即把溶剂可看作体积)(问题二)1、现知道手中的圆锥体每立方厘米约装0.9 克大米,计算这个圆锥体容器可装多少克大米?2、汇报结果。用每立方厘米装大米的克数乘圆锥的体积。算式:0.9 x 2 6 2 心2 3 6克3、验证计算结果用称称一称,比较一下结果。4、讨论两次结果为什么不同。由于测量时厚度不计,计算时是近似值。都存在误差。设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。(问题三)利用圆锥体积公式计算
14、。(1)r=2 c m h=6 c m v=?(2)d=6 m h=5 mv=?(问题四)计算不规则物体体积或容积。(直说出计算的方法即可)1、用什么方法计算出葫芦能装多少水?2、胡萝卜的体积怎样计算?3、不规则的零件体积计算?设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。四、总结全课说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。圆锥的体积教学设计3教学内容:九年义务教育六年制小学数学第十二册P32页。教学目标:1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。2、通过练习,使学生进一步深刻
15、理解圆柱和圆锥体积之间的关系。3、进一步培养学生将所学知识运用和服务于生活的能力。教学重点:灵活运用圆柱圆锥的有关知识解决实际问题。教学难点:同教学难点。设计理念:练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。教学步骤、教师活动、学生活动一、复习铺垫、内化知识。1.圆锥体的体积公式是什么?我们是如何推导的?2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。(2)一个圆锥的体积是18立方厘米,与它等底
16、等高的圆柱的体积 是()立方厘米。(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。3.求下列圆锥体的体积。(1)底面半径4 厘米,高6 厘米。(2)底面直径6 分米,高8 厘米。(3)底面周长31.4厘米.高12厘米。4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。学生独立练习,互相批改,指出问题。学生交流一下这几题在解题时要注意什么?二、丰富拓展、延伸练习。1.拓展练习:(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(2)一个圆
17、柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?2.完成31页第5题。讨论下列问题:(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?学生分组讨论,教师参与其中,以有疑问的方式参与讨论。三、充分提高,全面升华。1 .展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。2 .教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。3
18、 .讨论练习八蒙古包所占空间的大小的方法。(1)蒙古包是由哪几个部分组成的?(2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。4 .交流一下本节课的收获。学生分组讨论后动手实践并计算。学生先交流。四、全课总结,内化知识。L提问:(1)同学们掌握了圆锥体的哪些知识?(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?2 .学有余力的同学思考3 8 页思考题。3.作业:练习八6、7、8学生独立练习圆锥的体积教学设计4教学内容:人教版九年义务教育小学数学教科书第十二册。整体感知:这部分知识是学生在有了圆锥的认识和圆柱体积
19、相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。教学目的:1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。2、让学生经历猜想一一验证,合作一一探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思
20、想。点评:知识与技能目标的设计全面、具体、有针对性。不但使学生掌握圆锥体积的计算公式,而且培养了学生运用圆锥体积公式解决生活中的实际问题的能力,使学生体会到数学与生活的密切联系注。并注重对学生“猜想-验证”、“合作-探究”等学习方式的培养及“转化”数学思想方法的渗透;同时关注学生空间观念的培养及唯物辩证思想的渗透。教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题。教学过程:一、创设情境导入新课。1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?2、引导学生自己想办法用
21、多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。)3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。点评:本环节通过一系列的问题情境,激发学生学习新知识的兴趣。首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。这样不仅巩固了前面所学的知识,而且培养了学生的问题意识。然后放手让学生自己想办法用不同的方法求它的体积,拓展了学生的思维,培养了学生的创新能力,真正体现了学生的主体地位。最后让学生从具体的问题中体会到自己
22、方法的太麻繁、不实用,从而让学生有思索出一种更简洁、广泛的求圆锥体积的方法需要。二、经历体验,探究新知(一)渗透转化,帮助猜想1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,
23、体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这部分圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的发现进行汇报。3、课件出示:等底等高的圆柱和圆锥。组织学生认真观察,大胆猜想他们体积之间可能存在怎样的关系后说说理由。教师此时要引导学生展开想象的翅膀大胆去猜想 点评:本环节教师先引导学生回忆圆柱体积的推导过程,向学生渗 透“转化”的思想。使学生感受到新知也可通过“转化”的方法变成已学过的知识来解决。然后留给学生充分的时间亲自动手去削铅笔,感受到圆锥是怎样转化成圆柱的。通过观察比较、讨论交流一步一步得出圆锥的体积和它等底等高的圆柱有关
24、。同时运用学生已有的知识和经验让学生进行猜想它们之间有怎样的关系,发展了学生的想象空间,培养了学生的创新思维。(二)小组合作,实验验证。1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的1/3,
25、圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:概括板书:等底到高V圆柱二 S h V圆锥=l/3 s h4、深化公式。组织学生讨论给出不同的.条件求圆锥的体积,如:半径、直径、周长。预设板书如下:V =1/3 J i r 2 h V =1/3 (c/2 n )2 h V =1/3 (d/2)2 h5、教师组织学生独立完成书中例题后集体订正。点评:俗话说:”实践是检验真理的唯一标准。”学生在前面猜想的基础上通过小组合作动手实验、具体操作,验证得出等底等高的圆锥与圆柱体积间的关系,使自己的猜想在这里得到了验证。这一过程的设计潜移默化地向学生渗透了“猜想-验证”这
26、一完整的学习数学的方法。从而也培养了学生合作的意识、发展了学生的思维、培养了学生的创新意识和实践能力。最后从等底等高的圆柱与圆锥体积间的关系及圆柱的体积公式中,得出了圆锥体的体积公式。这个过程,让学生充分经历了知识的形成过程,体现了“动态生成”,为抽象的理论提供了感性材料。(三)看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。点评:伟大的科学家爱因斯坦曾说过:“提出一个问题比解决一个问题更重要。”学生经历了问题的探索过程后,再将他们引加到书本上。这时学生的可能提的更有价值、有深度。二、巩固新知,拓展应用。1、判断并说明理由(1)圆柱体积是圆锥体积的3 倍()(2)一个圆锥的高
27、不变,底面积越大,体积越大。()(3)一个圆锥体的高是3分米,底面积1 0 平方分米,它的体积是 3 0 立方分米。()组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的 1/3 是以等底等高为前提的。2、求下列圆锥的体积(口答,只列式,不计算)s=4 平方米,h=2 平方米r=2分米,h=3 分米d=6 厘米,h=5 厘米组织学生根据圆锥体积公式解答。3、实践与应用:学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好办法?组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。点评:练习设计由浅入深,由例题到实践
28、应用,层次鲜明,并注重培养学生解决实际问题的能力,达到学以致用的目的四、课后总结,感情升华。这节课你有什么收获?你是怎样获得的?不仅关注学生知识技能的掌握,更注重数学方法的提炼及学生的情感、态度、学习数学的信心等,促进了学生的可持续发展。总评:1、钻研教材,创造性地使用教材。教师在充分了解学生、把握课程标准、教学目标、教材编写意图的基础上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削”的过程中体验到圆柱与圆锥的联系;再如动手实验这一环节的设计,使学生在观察、比较、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活
29、的密切联系。2、注重数学思想方法的渗透。数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想办法求圆锥的体积,此时学生便想办法将圆锥体的容器装满水后倒入圆柱或长(正)方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化”的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。3、猜想-验证、合作交流等学习方式体现了学生的主体地位。本节课在探究新知的过程中,借助削铅笔这一学生熟知的活动帮助学生猜想圆锥的体积可能会与谁有关,再进一步猜想又会有怎样的关系。紧接着让学生在具体的实验操作中去验证自己的猜想是否正确,从而得出结论。整
30、个过程是在教师的引导下,学生自主探索,发现问题,在合作交流中解决问题。教师留出了充足的时间,让学生去思考、讨论、探索、争辩和交流。真正体现了人人学有价值的数学,不同的人在数学上得到不同的发展圆锥的体积教学设计5教学内容:教材第3 1-3 2页,练习八第4 一1 0题。教学目标:使学生进一步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积解决一些简单的实际问题;教学重点:进一步掌握圆锥的体积计算方法。教学难点:根据不同的条件计算圆锥的体积。预习作业:1、一个圆锥的体积是与它等底等高的圆柱体积的();,;2、圆柱的体积是它等底等高的圆锥体积的();3、练习八第4题、第6题、第
31、7题和第8题教学过程:预习效果检测1、一个圆锥的体积是与它等底等高的圆柱体积的();2、圆柱的体积是它等底等高的圆锥体积的();3、把一个圆柱削成最大的圆锥,削去部分的体积相当于圆柱的相当于圆锥的()倍。二、基本练习1、提问:1)同学们想一想:圆锥的体积怎样计算?2)口答下列各圆锥的体积。底面积3平方分米,高2分米。底面积4平方厘米,高4.5厘米。2、完成练习八的第4题。让学生仔细读题,并独立完成习题。引导同学相互讨论,并说出解题思路。3、完成练习八的第5题。引导学生仔细观察题中的图形,并凭自己的感觉猜想哪个圆柱的体积与圆锥的体积相等。教师提醒学生:底面直径之间的倍数关系并不等于底面面积之间的
32、倍数关系。请学生起来回答猜想的答案,给学生几分钟的时间,让学生利用已知的条件进行计算验证。老师和学生一起找出正确的答案是:底面直径9厘米,高4厘米的圆柱。4、完成练习八的第6题。让学生仔细读题,并完成第一小题。请学生起来说出解题的经过和步骤。老师根据学生的发言总结:能削成最大的圆锥应是与这个圆形状的木料等底等高。让学生在小组内讨论第(2)小题。让学生自由发言,并板书讨论出的有关数学问题再让大家起进行解决,比如:削去的木料体积是多少?削去的木料体积是圆锥体积的几倍?削去的木料体积是整个木料的几分之几?5、完成练习八的第7、8、9 题。个别板演,全班齐练,小组讨论,集体评讲与小结。6、完成练习八的
33、第1 0 题。引导学生合作学习,并在小组内对测量和计算的方法进行讨论,选择最优方法,让学生在课后进行实验。7、完成思考题。让学生仔细读题并在小组内讨论解题的方法。请学生起来说出小组讨论的结果,老师对学生的发言进行总结,并引导学生进行如下的推想:当圆锥的高是4.2 厘米时,如果圆柱的高也是4.2厘米时,那么圆锥与圆柱的体积比是1:3;因此圆柱的高必须是4.2 厘米的2倍,也就是8.4 厘米。同理,圆柱的高是4.2 厘米时,圆锥的高必须是4.2厘米的一半,也就是2.1厘米。课堂小结通过刚才的练习,想必大家对于圆锥体积公式的运用有了一定的了解,对于一些细节问题都能够很好的注意,你能告诉大家你学习的收
34、获吗?让学生自由发言,老师补充总结。三、当堂达标检测1、补充习题相关练习;2、反馈纠正。教学反思:圆锥的体积教学设计6一、复习1、圆柱的体积公式是什么?用字母怎样表示?2、求下列各圆柱的体积。(口答)(1)底面积是5平方厘米,高是6厘米。(2)底面半径4分米,高 是10分米。(3)底面直径2米,高是3米。师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。生:圆锥的底面是圆形的。生:从圆锥的顶点到底面圆心的距离是圆锥的高。师:你能上来指出这个圆
35、锥的高吗?师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。师:你们看到过哪些物体是圆锥形状的?(略)师:对。在生活中有很多圆锥形的物体。师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。出示小黑板:1、圆锥的体积和同它等底等高的
36、圆柱的体积有什么关系?2、圆锥的体积怎么算?体积公式是怎样的?学生分组做实验,老师巡回指导。师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?生:圆柱的体积是圆锥体积的3倍。生:圆锥的体积是同它等底等高的圆柱体权的1/3。板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的l/3o师:说得很好。那么圆锥的体积怎么算呢?生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除
37、以3,就是圆锥的体积。师:谁能说说圆锥的体积公式。生:圆锥的体积公式是v=l/3sh。师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。生:我认为 圆锥的体积v等于和它等底等高的圆柱体积的三分之一。”这句话很重要。生:我认为这句话中 等底等高 和 三分之一 这几个字特别重要。师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。师:等底不等高或者等高不等底的
38、圆锥体积不是圆柱体积的l/3o师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。师:下面我们就根据 等底等高的圆锥体积是圆柱体积的1/3这个关系来解决下列问题。例1:一个圆锥形零件,底面积是19平方厘米,高 是12厘米。这个零件的体积是多少?(两名学生板演,老师巡视)师:这位同学做的对不对?生:对!师:和他做的一一样的同学请举手。(绝大多数同学举手)师:那么这位同学做错在哪里呢?(指那位做错的同学做的)生:他漏写了 l/3 o用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以l/3o师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥
39、的体积计算公式,即v=l/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。三、巩固练习(1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?(2)、求圆锥的体积(看图)(3)、一个圆锥的底面直径是2 0厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。2、填空。(1)一个圆锥的体积是8立方分米,底面积是2平方分米,高()分米、。(2)圆锥形的容器高1 2厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是()厘米。3、选择(1)两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的()。(2)把一段
40、圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的()。四、课堂总结师:今天,我们学习了什么内容?怎样计算圆锥的体积?对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=l/3 s h这个公式算圆锥体积时,要特别注意什么。五、布置作业课外作业:有一个高9厘米,底面积是2 0平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。3、向学生渗透知识间 相互转化
41、 的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。圆锥的体积计算。圆锥的体积公式推导。圆锥的体积是与它等底等高的圆柱体积的三分之一。多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。空心圆锥和圆柱实物各一个,沙土若干。圆锥的体积教学设计7基本信息课题圆锥的体积作者及工作单位殷兴均达州市宣汉县南坝镇第二中心小学教材分析 圆锥的体积是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入
42、同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学 习 圆锥体积之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。2、运用实验法在合作
43、探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。3、体会数学与生活的密切联系,感受探究成功的快乐。教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。教学过程教学环节教 师 活 动 预 设 学 生 行 为 设 计 意 图一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。2.一个顶点;一个侧面
44、,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。二、创设情境出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。三、学习新课1、猜想体积大小实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。圆锥体积可能是圆柱体积的二分之一
45、、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。2、理解等底等高我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础3、猜想关系、实验验证同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。谁来汇报一下,你们组是怎样做实验的?你们做实验的圆柱体和圆锥
46、体在体积大小上有什么倍数关系?分组做实验。学生汇报用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。4、总结公式我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)V 锥4柱 Xl/3=shXl/3“sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。5、全面验证是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?(课件演示)等底不等高、等高不等底为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?现在我们得到的这个结论就
47、更完整了。(指名反复叙述公式。)今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。6、圆锥体积公式的实际应用(1)例:一个圆锥形的物体,底面积是1 1平方厘米,高是9厘米.它的体积是多少立方厘米?(2)一个圆锥的底面直径是2 0厘米,高是6厘米,它的体积是多少?(只列式不计算)(3)一个圆柱与一个圆锥体积相等,底面积也相等。圆 柱 高1 5厘米,圆锥高多少厘米?(4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面
48、积是圆柱底面积的几倍?圆锥的体积教学设计8教学过程:一、复习导入。1、怎样计算圆柱的体积?(板书公式)2、一个圆柱的底面积是6 0平方米,高1 5米,它的体积是多少立方米?3、出示一个圆锥,请学生说说圆锥的特征。4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)二、动手测量,大胆猜想。1、动手测量,找圆锥和圆柱的底和高的关系。师:为了我们研究圆锥体积的方便,每个小组都准备了一个圆柱和一个圆锥。下面请同学们以小组为单位,动手测量一下,你们手中的圆柱和圆锥,看看你能发现什么?2、学生动手测量,教师巡视。给予指导。3、交流得出结
49、论:圆柱和圆锥等底等高。4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?三、实验操作,推导出圆锥体积计算公式。1、实验操作。师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。2、学生分组实验,教师巡视。3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?4、强调等底等高。5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)6、练 习(出示)(1 )一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体 积 是()立方分米。(2 )一个圆锥的体积是1.8立方
50、分米,与它等底等高的圆柱的体 积 是O立方分米。7、得出圆锥的体积计算公式。8、用字母表示圆锥的体积计算公式。三、巩固练习。1、计算下面圆锥的体积。(只列式不计算)底面积是6.2 8 平方分米,高是9 分米。底面半径是6 厘米,高是4.5 厘米。底面直径是4 厘米,高是4.8 厘米。底面周长是12.56厘米,高是6 厘米。2、填空。a 圆锥的体积二(),用字母表示是()。b 圆柱体积的与和它()的圆锥的体积相等。c 一个圆柱和一个圆锥等底等高,圆柱的体积是3 立方分米,圆锥的体积是()立方分米。d 一个圆锥的底面积是12平方厘米,高是6 厘米,体 积 是()立方厘米。3、判断。(用手势表示)a