《初三数学上下册知识点总结与重点难点总结模板.pdf》由会员分享,可在线阅读,更多相关《初三数学上下册知识点总结与重点难点总结模板.pdf(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初三数学知识整理与重点难点总结第21章二次根式知识框图二次根式而(a N 0)是非负数(正 =a(a 0)=a(a 0)二次根式的化简与运算二次根式的乘除二次根式的加减理解并掌握下列结论:(1)五(。之)是非负数;(2)(Va)2=a(a(y).(3)=0).I.二次根式的定义和概念:1、定义:一般地,形 如 小(a“)的代数式叫做二次根式。当a0时,da表 示a的算数平方根No=o2、概念:式子g(a 0)叫二次根式。g (a 0)是一个非负数。II.二次根式U 的简单性质和几何意义1)a0;A/a0 双 重 非 负 性 2)(3)八2=a(a2O)任何一个非负数都可以写成一个数的平方的形式
2、3)d(a2+b2)表示平面间两点之间的距离,即勾股定理推论。IV.二次根式的乘法和除法1运算法则Ya 7b=dab(a0,b0)Ya/b=Ya/4b(a0,b0)二数二次根之积,等于二数之积的二次根。2 共班因式如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共软因式,也称互为有理化根式。V.二次根式的加法和减法1 同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2 合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式.3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进
3、行合并VI.二次根式的混合运算1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时5在有些简便运算中也许可以约分,不要盲目有理化VII.分母有理化分母有理化有两种方法I.分母是单项式如 NaNb=ax 如 Nbxb=7ab/bII.分母是多项式要利用平方差公式如 l Z a+b=N a 弋 b/N a+7 b)N a 7b)=7a7b/abIII.分母是多项式要利用平方差公式如1/血+4=血一、七/(血+也)(血 一 也)=也 一 Yb/a-b第22章 一元二次方程知识框图旋转的定义旋转对称中心 把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图
4、形,这个定点叫做旋转对称中心,旋转的角度叫做旋 转 角(旋转角小于0。,大于360。)。也就是说:中 心 对 称 图 形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。中心对称图形正(2N)边 形(N为大于1的正整数),线段,矩形,菱形,圆只是中心对称图形平行四边形等.第24章 圆知识框图圆和点的位置关系:以 点P与 圆0的 为 例(设P是一点,则P 0是点到圆心的距离),P在。0 外,P O r;P 在。0 上,P O=r;P 在。0 内,P O
5、 r;A B与。0相切,P O =r;A B 与。0 相交,P 0 R+r;外 切P=R+r;相交 R-r P R+r;内切 P=R-r;内含 P 0时,开口方向向上,avO时,开口方向向下。lai还可以决定开口大小Jal越大开口就越小Jal越小开口就越大。)二次函数表达式的右边通常为二次。x是 自变量,v 是 x 的二次函数x1,x2=bbd(b2-4ac)/2a(即一元二次方程求根公式)二次函数的图像 在平面直角坐标系中作出二次函数片x²,的图像,可以看出,二次函数的图像是一条永无止境的抛物线。抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点
6、为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即 直 线x=0)2.抛物线有一个顶点P,坐 标 为P(-b/2a,(4ac-b²)/4a)当-b/2a=0时,P在y轴 上;当A=b²-4ac=0时,P在x轴上。3.二次项 系 数a决定抛物线的开口方向和大小。当a0时,抛物线向上开口;当a0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a0,所 以b/2a要小于0,所 以a、b要异号事实上,b有其自身的几何意义:抛 物 线 与y轴的交点处的该抛物线切线的函数解析式(一次函数)的 斜 率k的值。可通过对二次函数求导得到。5.常数项c决定抛物线
7、与v轴交点。抛 物 线 与y轴 交 于(0,c)6.抛物线与x轴交点个数/=b²-4ac0时,抛 物 线 与x轴有2个交点。/=b²-4ac=0时,抛 物 线 与x轴有1个交点。/=b²-4ac0时,函数在 x=-b/2a 处取得最小值 f(-b/2a)=4ac-b²/4a;在 xx-b/2a上是增函数;抛物线的开口向上;函数的值域是 y|y%ac-b²/4a相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(aM)解析式:第27章相似知识框图相似三角形的认识对应角相等,对应边成比例的两个三角形叫
8、做相似三角形。(similar triangles)。互为相似形的三角形叫做相似三角形相似三角形的判定方法根据相似图形的特征来判断。(对应边成比例,对应角相等)1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;直角三角形相似判定定理1.斜边与一条直角边对应成比例的两直角三角形相似。2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似
9、。射影定理三角形相似的判定定理推论推论一:顶角或底角相等的那个的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。相似三角形的性质1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。2.相似三角形周长的比等于相似比.3.相
10、似三角形面积的比等于相似比的平方。相似三角形的特例能够完全重合的两个三角形叫做全等三角形。(congruent triangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形状完全相同,相 似 比 是k=1。全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。因此,相似三角形包括全等三角形。全等三角形的定义能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。由此,可以得出:全等三角形的对应边相等,对应角相等。(1)全等三角形对应角所对的边是对应边
11、,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;三角形全等的判定公理及推论1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。由3可推到4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)5、直角三角形全等条件有:斜边及一直角边对应相等的两
12、个直角三角形全等(HL或“斜边,直角边”)所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。注意:在全等的判定中,没 有AAA和S S A,这两种情况都不能唯一确定三角形的形状。A是英文角的缩写(angle),S是英文边的缩写(side)。全等三角形的性质1、全等三角形的对应角相等、对应边相等。2、全等三角形的对应边上的高对应相等。3、全等三角形的对应角平分线相等。4、全等三角形的对应中线相等。5、全等三角形面积相等。6、全等三角形周长相等。7、三边对应相等的两个三角形全等。(SSS)8、两边和它们的夹角对应相等的两个三角形全等。(SAS)9、两角和它们的夹边对应相等的两个三
13、角形全等。(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)全等三角形的运用1、性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反。2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。第28章锐角三角函数知识框图第29章投影与视图知识框图代数重点难点总结方 程(组)一、基本概念1.方程、方 程 的 解(根)、方程组的
14、解、解 方 程(组)二、一元二次方程1.定义及一般形式:2 .解法:直接开平方法(注意特征)配 方 法(注意步骤一推倒求根公式)公式法:因式分解法(特征:左边=0)3 .根 的 判 别 式:=4 a c4 .根与系数的关系(韦达定理):%+=-2,玉 =a a逆定理:若,则 以 玉,为根的一元二次方程是:a (x-玉)(x-&)=0。5 .常用等式:三、可化为一元二次方程的方程1.分式方程定义基本思想:去分母基本解法:去分母法换元法(如,)验根及方法2 .无理方程定义基本思想:分母有理化基本解法:乘 方 法(注意技巧!)换 元 法(例,)验根及方法3 .简单的二元二次方程组由一个二元一次方程和
15、一个二元二次方程组成的二元二次方程组都可用代入法解。四、列方程解应用题一概述列 方 程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。设 元(未知数)。直接未知数间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。用含未知数的代数式表示相关的量。寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。解方程及检验。答案。综上所述,列方程解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际
16、问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。函数及其图象重难点二次函数的图象和性质。一、平面直角坐标系1 .各象限内点的坐标的特点2 .坐标轴上点的坐标的特点3 .关于坐标轴、原点对称的点的坐标的特点4 .坐标平面内点与有序实数对的对应关系二、函数1 .表示方法:解析法;列表法;图象法。2.确定自变量取值范围的原则:使代数式有意义;使实际问题有意义。3 .画函数图象:列表;(2)描点;连线。三、二次 函 数(定义一图象一性质)定义:图象:抛 物 线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。用配 方 法 变 为,则顶点
17、为(h,k);对称轴为直线x=h;aO时,开口向上;a 0时,在对称轴左侧,右侧;a0时,在对称轴左侧,右侧。四、重要解题方法1 .用待定系数法求解析式(列方程 组 求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。2 .利用图象二次函数中的k、b;a、b、c的符号。解直角三角形重难点解直角三角形一、三角函数1.定义:在 R t Z A B C 中,Z C=R t Z,则 s i n A=;c o s A=;t g A=;c t g A=.2.特殊角的三角函数值:0 3 0 4 5 6 0 9 0 s i n a0V 2G12Tc
18、 o s a1也V 2j _022t g a/1G+0 03 .互余两角的三角函数关系:s i n(9 0 -a)=c o s a ;-4 .三角函数值随角度变化的关系5 .查三角函数表二、解直角三角形1 .定义:已知边和角(两个,其中必有一边)一所有未知的边和角。2 .依据:边的关系:角的关系:A+B=9 0 边角关系:三角函数的定义。注意:尽量避免使用中间数据和除法。三、对实际问题的处理1 .俯、仰角:2 .方位角、象限角:3 .坡度:t g a4 .在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。几何四边形重难点相交线与平行线、三角形、四边形的有关概念、判定、性质。分
19、类表:1 .一般性质(角)内角和:3 6 0 顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。外角和:3 6 0 2 .特殊四边形研究它们的一般方法:平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定判定步骤:四边形一平行四边形一矩形一正方形菱形一一t对角线的纽带作用:3 .对称图形轴对称(定义及性质);中心对称(定义及性质)4 .有关定理:平行线等分线段定理及其推论1、2三角形、梯形的中位线定理平行线间的距离处处相等。(如,找下图中面积相等的三角形)5 .重要辅助线:常连结四边形的对角线;梯形
20、中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6 .作 图:任意等分线段。第十章圆重难点圆的重要性质;直线与圆、圆与圆的位置关系;与圆有关的角的定理;与圆有关的比例线段定理。一、圆的基本性质1.圆的定义2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:圆心角定义(等对等定理)圆周角定义(圆周角定理,与圆心角的关系)弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:相离、相切、相交2.切线的性质(重点)3.切线的
21、判定定理(重点)。圆的切线的判定有4.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)外离、外切、相交、内切、内含2.相 切(交)两圆连心线的性质定理3.两圆的公切线:定义性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:内角的一半:(解 RtaOAM可求出相关元素等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线L作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦