燃料电池综合特性实验报告(共8页).doc

上传人:飞****2 文档编号:8875052 上传时间:2022-03-26 格式:DOC 页数:9 大小:546.50KB
返回 下载 相关 举报
燃料电池综合特性实验报告(共8页).doc_第1页
第1页 / 共9页
燃料电池综合特性实验报告(共8页).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《燃料电池综合特性实验报告(共8页).doc》由会员分享,可在线阅读,更多相关《燃料电池综合特性实验报告(共8页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上燃料电池综合特性实验论文作者:宋东辉学号:单位:二十二连二区队A组燃料电池综合特性实验一、实验目的:1. 了解燃料电池的工作原理2. 观察仪器的能量转换过程:电能电解池 氢能(能量储存)燃料电池电能3. 测量燃料电池输出特性,作出所测燃料电池的伏安特性(极化)曲线,电池输出功率随输出电压的变化曲线。计算燃料电池的最大输出功率及效率4. 测量质子交换膜电解池的特性,验证法拉第电解定律二、实验原理:1、燃料电池质子交换膜燃料电池(如上图)在常温下工作,其基本结构如图1所示。目前广泛采用的全氟璜酸质子交换膜为固体聚合物薄膜,厚度0.050.1mm,它提供氢离子(质子)从阳极

2、到达阴极的通道,而电子或气体不能通过。膜两边的阳极和阴极由石墨化的碳纸或碳布做成,厚度0.20.5mm,导电性能良好,其上的微孔提供气体进入催化层的通道,又称为扩散层。进入阳极的氢气通过电极上的扩散层到达质子交换膜。氢分子在阳极催化剂的作用下解离为2个氢离子,即质子,并释放出2个电子,阳极反应为:H2 = 2H+2e (1)氢离子以水合质子H+(nH2O)的形式,在质子交换膜中从一个璜酸基转移到另一个璜酸基,最后到达阴极,实现质子导电,质子的这种转移导致阳极带负电。在电池的另一端,氧气或空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧与氢离子和电子反应生成水,阴极反应为:O2+4H+

3、4e = 2H2O (2)阴极反应使阴极缺少电子而带正电,结果在阴阳极间产生电压,在阴阳极间接通外电路,就可以向负载输出电能。总的化学反应如下:2H2O2 = 2H2O (3)2、 水的电解将水电解产生氢气和氧气,与燃料电池中氢气和氧气反应生成水互为逆过程。水电解装置同样因电解质的不同而各异,碱性溶液和质子交换膜是最好的电解质。若以质子交换膜为电解质,可在图1右边电极接电源正极形成电解的阳极,在其上产生氧化反应2H2O = O2+4H+4e。左边电极接电源负极形成电解的阴极,阳极产生的氢离子通过质子交换膜到达阴极后,产生还原反应2H+2e = H2。即在右边电极析出氧,左边电极析出氢。作燃料电

4、池或作电解器的电极在制造上通常有些差别,燃料电池的电极应利于气体吸纳,而电解器需要尽快排出气体。燃料电池阴极产生的水应随时排出,以免阻塞气体通道,而电解器的阳极必须被水淹没。实验仪器:仪器的构成如上图所示。燃料电池,电解池,太阳能电池的原理见实验原理部分。3、 质子交换膜质子交换膜必需含有足够的水分,才能保证质子的传导。但水含量又不能过高,否则电极被水淹没,水阻塞气体通道,燃料不能传导到质子交换膜参与反应。如何保持良好的水平衡关系是燃料电池设计的重要课题。为保持水平衡,我们的电池正常工作时排水口打开,在电解电流不变时,燃料供应量是恒定的。若负载选择不当,电池输出电流太小,未参加反应的气体从排水

5、口泄漏,燃料利用率及效率都低。在适当选择负载时,燃料利用率约为90。4、 气水塔气水塔为电解池提供纯水(2次蒸馏水),可分别储存电解池产生的氢气和氧气,为燃料电池提供燃料气体。每个气水塔都是上下两层结构,上下层之间通过插入下层的连通管连接,下层顶部有一输气管连接到燃料电池。初始时,下层近似充满水,电解池工作时,产生的气体会汇聚在下层顶部,通过输气管输出。若关闭输气管开关,气体产生的压力会使水从下层进入上层,而将气体储存在下层的顶部,通过管壁上的刻度可知储存气体的体积。两个气水塔之间还有一个水连通管,加水时打开使两塔水位平衡,实验时切记关闭该连通管。风扇作为定性观察时的负载,可变负载作为定量测量

6、时的负载。5、 测试仪 测试仪面板如上图所示。测试仪可测量电流,电压。若不用太阳能电池作电解池的电源,可从测试仪供电输出端口向电解池供电。实验前需预热15分钟。区域1电流表部分:做为一个独立的电流表使用。其中:两个档位:2A档和200mA档,可通过电流档位切换开关选择合适的电流档位测量电流。两个测量通道:电流测量和电流测量。通过电流测量切换键可以同时测量两条通道的电流。区域2电压表部分:做为一个独立的电压表使用。共有两个档位:20V档和2V档,可通过电压档位切换开关选择合适的电压档位测量电压。区域3恒流源部分:为燃料电池的电解池部分提供一个从0350mA的可变恒流源。三、实验内容与步骤1、质子

7、交换膜电解池的特性测量理论分析表明,若不考虑电解器的能量损失,在电解器上加1.48伏电压就可使水分解为氢气和氧气,实际由于各种损失,输入电压高于1.6伏电解器才开始工作。电解器的效率为: (4)输入电压较低时虽然能量利用率较高,但电流小,电解的速率低,通常使电解器输入电压在2伏左右。根据法拉第电解定律,电解生成物的量与输入电量成正比。在标准状态下(温度为零 C,电解器产生的氢气保持在1个大气压),设电解电流为I,经过时间t生产的氢气体积(氧气体积为氢气体积的一半)的理论值为: (5)式中F = e N = 9.65104 库仑/摩尔为法拉第常数,e = 1.60210-19库仑为电子电量,N

8、= 6.0221023为阿伏伽德罗常数,It/2F为产生的氢分子的摩尔(克分子)数,22.4升为标准状态下气体的摩尔体积。若实验时的摄氏温度为T,所在地区气压为P,根据理想气体状态方程,可对(5)式作修正: (6)式中P0为标准大气压。自然环境中,大气压受各种因素的影响,如温度和海拔高度等,其中海拔对大气压的影响最为明显.由国家标准GB4797.2-2005可查到,海拔每升高1000米,大气压下降约10。由于水的分子量为18,且每克水的体积为1cm3,故电解池消耗的水的体积为: (7)应当指出,(6),(7)式的计算对燃料电池同样适用,只是其中的I代表燃料电池输出电流,V氢气代表燃料消耗量,V

9、水代表电池中水的生成量。确认气水塔水位在水位上限与下限之间。将测试仪的电压源输出端串连电流表后接入电解池,将电压表并联到电解池两端。将气水塔输气管止水夹关闭,调节恒流源输出到最大(旋钮顺时针旋转到底),让电解池迅速的产生气体。当气水塔下层的气体低于最低刻度线的时候,打开气水塔输气管止水夹,排出气水塔下层的空气。如此反复23次后,气水塔下层的空气基本排尽,剩下的就是纯净的氢气和氧气了。根据表1中的电解池输入电流大小,调节恒流源的输出电流,待电解池输出气体稳定后(约1分钟),关闭气水塔输气管。测量输入电流,电压及产生一定体积的气体的时间,记入表1中。表1 电解池的特性测量输入电流I(A)输入电压(

10、V)时间t(秒)电量It(库仑)氢气产生量测量值(升)氢气产生量理论值010020030由(6)式计算氢气产生量的理论值。与氢气产生量的测量值比较。若不管输入电压与电流大小,氢气产生量只与电量成正比,且测量值与理论值接近,即验证了法拉第定律。1、 燃料电池输出特性的测量在一定的温度与气体压力下,改变负载电阻的大小,测量燃料电池的输出电压与输出电流之间的关系,如图5所示。电化学家将其称为极化特性曲线,习惯用电压作纵坐标,电流作横坐标。理论分析表明,如果燃料的所有能量都被转换成电能,则理想电动势为1.48伏。实际燃料的能量不可能全部转换成电能,例如总有一部分能量转换成热能,少量的燃料分子或电子穿过

11、质子交换膜形成内部短路电流等,故燃料电池的开路电压低于理想电动势。随着电流从零增大,输出电压有一段下降较快,主要是因为电极表面的反应速度有限,有电流输出时,电极表面的带电状态改变,驱动电子输出阳极或输入阴极时,产生的部分电压会被损耗掉,这一段被称为电化学极化区。输出电压的线性下降区的电压降,主要是电子通过电极材料及各种连接部件,离子通过电解质的阻力引起的,这种电压降与电流成比例,所以被称为欧姆极化区。输出电流过大时,燃料供应不足,电极表面的反应物浓度下降,使输出电压迅速降低,而输出电流基本不再增加,这一段被称为浓差极化区。综合考虑燃料的利用率(恒流供应燃料时可表示为燃料电池电流与电解电流之比)

12、及输出电压与理想电动势的差异,燃料电池的效率为: (8)某一输出电流时燃料电池的输出功率相当于图5中虚线围出的矩形区,在使用燃料电池时,应根据伏安特性曲线,选择适当的负载匹配,使效率与输出功率达到最大。实验时让电解池输入电流保持在300mA,关闭风扇。将电压测量端口接到燃料电池输出端。打开燃料电池与气水塔之间的氢气、氧气连接开关,等待约10分钟,让电池中的燃料浓度达到平衡值,电压稳定后记录开路电压值。将电流量程按钮切换到200mA。可变负载调至最大,电流测量端口与可变负载串联后接入燃料电池输出端,改变负载电阻的大小,使输出电压值如表2所示(输出电压值可能无法精确到表中所示数值,只需相近即可),

13、稳定后记录电压电流值。负载电阻猛然调得很低时,电流会猛然升到很高,甚至超过电解电流值,这种情况是不稳定的,重新恢复稳定需较长时间。为避免出现这种情况,输出电流高于210mA后,每次调节减小电阻0.5,输出电流高于240mA后,每次调节减小电阻0.2,每测量一点的平衡时间稍长一些(约需5分钟)。稳定后记录电压电流值。表2 燃料电池输出特性的测量 电解电流 mA输出电压U(V)0.900.850.800.750.70输出电流I(mA)0功率P=UI(mW)0作出所测燃料电池的极化曲线。作出该电池输出功率随输出电压的变化曲线。该燃料电池最大输出功率是多少?最大输出功率时对应的效率是多少?实验完毕,关

14、闭燃料电池与气水塔之间的氢气氧气连接开关,切断电解池输入电源。【注意事项】1. 使用前应首先详细阅读说明书。2. 该实验系统必须使用去离子水或二次蒸馏水,容器必须清洁干净,否则将损坏系统。3. PEM电解池的最高工作电压为6V,最大输入电流为1000mA,否则将极大地伤害PEM电解池。4. PEM电解池所加的电源极性必须正确,否则将毁坏电解池并有起火燃烧的可能。5. 绝不允许将任何电源加于PEM燃料电池输出端,否则将损坏燃料电池。6. 气水塔中所加入的水面高度必须在上水位线与下水位线之间,以保证P EM燃料电池正常工作。7. 该系统主体系有机玻璃制成,使用中需小心,以免打坏和损伤。 8. 太阳

15、能电池板和配套光源在工作时温度很高,切不可用手触摸,以免被烫伤。9. 绝不允许用水打湿太阳能电池板和配套光源,以免触电和损坏该部件。 10. 配套“可变负载”所能承受的最大功率是1W,只能使用于该实验系统中。11. 电流表的输入电流不得超过2A,否则将烧毁电流表。 12. 电压表的最高输入电压不得超过25V,否则将烧毁电压表。13. 实验时必须关闭两个气水塔之间的连通管。四、实验数据记录表格:压强:1009.0hpa 温度:24.51电解池特性测量表1 电解池的特性测量输入电流I(A)输入电压(V)时间t(秒)电量It(库仑)氢气产生量测量值 (升)氢气产生量理论值 0101.9042042.

16、00.0050.00530201.9620641.20.0050.00540302.0114042.00.0050.00532燃料电池输出特性的测量表2 燃料电池输出特性的测量 电解电流300 mA输出电压U/V0.9590.90.850.80.750.70.689输出电流I/mA01.35.826.686.9161.4181功率P/mW01.174.9321.2865.175112.98124.7090.6750.6570.6430.5570.4990.4470.3930.3390.286204233273273273273273273273137.7153.081175.539152.061136.227122.031107.28992.54778.078五、数据处理:燃料电池极化特性曲线燃料电池输出功率随输出电压的变化曲线P最大=153.66mW 电压=0.643V专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁