《《光通信网知识》课件.ppt》由会员分享,可在线阅读,更多相关《《光通信网知识》课件.ppt(122页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、8.1通信网的发展趋势通信网的发展趋势8.2SDH传送网传送网8.3WDM光网络光网络8.4光接入网光接入网第第8章章光纤通信网络光纤通信网络返回主目录8.1通信网的发展趋势通信网的发展趋势 通通信信网网总总的的发发展展趋趋势势是是数数字字化化、综综合合化化和和宽宽带带化化。与光纤通信关系最为密切的是宽带化,这是人类社会发展到信息时代的迫切需求,也是科技进步的必然产物。数数字字化化就是在通信网的各个部分(核心网和接入网)及各个环节(传输、交换、接入、终端等)全面采用数字技术。目前核核心心网网(或称骨干网)已实现了数字化,采用了数字传输和数字交换技术,其优越性已十分明显。接入网的情况比较复杂,模
2、拟的东西还大量存在,如电话网从核心网边缘的端局交换机到用户终端的用户环路,大量使用的还是模拟二线;有线电视系统也基本上是模拟的;新近采用的非对称数字用户线(ADSL)实际上是模数混合体制。综综合合业业务务数数字字网网(包包括括窄窄带带和和宽宽带带)的的主主要要目目的的是是:要实现接入部分的数字化,提供端到端数字连接,从而支持综合业务,但由于种种原因,并没有普遍推广应用。所以现在只能说接入网正处于数字化的过程中,还不能说已实现了数字化。综综合合化化,主要指业务的综合,即通信网要由原来的单一业务网(如电话网、分组数据网)发展为能同时提供多种业务(包括话音、数据、图像等),特别是多媒体业务的网络。数
3、数字字化化是是综综合合化化的的前前提提。当各种类型的消息都用统一的数字符号表示时,通过端到端的数字传输,便能实现综合业务。长期以来,通信网的主要业务是话音,所以电信网基本上等同于电话网;电信网中还有一种业务是电报,相当于原始的低速数据业务。随 着 计 算 机 网 络 的 出 现 和 发 展,特 别 是 因因 特特 网网(Internet)扩展到全世界,对数据业务量的需求不断增长,近十年来,几乎每半年翻一番。数据业务量猛增的主要推动力是因特网的WWW业务和高速多媒体业务。因此,用不了多少时间,数据业务的总量将超过电话业务。此外,电视会议、远程教育、电子商务等应用都要求通信网提供高速数据和视频业务
4、,而这些业务所需的带宽都远大于电话业务。因此业务综合化必将导致网络的宽带化。通信网络从电话业务为主演进到多媒体业务为主,每个用户占用的带宽由64 kb/s要提高到6 Mb/s左右,由此估计总业务量约增加100倍。如果考虑到今后要支持高清晰度电视等更宽带宽的业务,则总业务量还会不断增加。所以网络宽带化首先是人们的迫切需求。另一方面,由于光纤通信技术的成就,特别是密密集集波波分分复用复用(DWDM)技术技术的发展,使得网络的传输带宽大大增加。如果双绞铜线的传输带宽按2 Mb/s估计,一根光纤采用DWDM技术,传输容量可达到20200 Gb/s,也就是说,光纤的传输容量是铜线的一万至十万倍。因此宽带
5、化意味着光纤将成为主要的传输媒质。今天,在核心网内以光纤为传输媒质,采用DWDM技术实现宽带传输,同时采用光交换技术构成全光通信网,已成为现实。在接入网中,光纤正在伸向用户,从光光纤纤到到路路边边(FTTC)、光光纤纤到到大大楼楼(FTTB)发展到光光纤纤到到交交接接箱箱(FTTCab),最后将实现光纤到家光纤到家(FTTH)。当然,从带宽需求和经济性考虑,接入网采用光纤没有必要也不可能如同核心网那样采用DWDM技术,而是采用比较简单和廉价的光纤通信设备。因此接入网和核心网实现宽带化的技术途径是不同的。本章将分别予以介绍。8.2SDH传传送送网网 8.2.1SDH传送网的功能结构传送网的功能结
6、构 一个电信网有两大功能群:一个电信网有两大功能群:传送功能群传送功能群和和控制功能群控制功能群。传传送送网网就是完成传送功能的手段,当然传送网也能传递各种网络控制信息。传送网主要指逻辑功能意义上的网络,是一个复杂庞大的网络。为了便于网络的设计和管理,通常用分分层层(Laying)和分分割割(Partitioning)的概念,将将网网络络的的结结构构元元件件按按功功能能分分为为参参考考点点(接入点接入点)、拓扑元件、传送实体、拓扑元件、传送实体和和传送处理功能传送处理功能四大类。四大类。网网络络的的拓拓扑扑元元件件分分为为三三种种:层层网网络络、子子网网、链链路路,只需这三种元件就可以完全地描
7、述网络的逻辑拓扑,从而使网络的结构变得灵活,网络描述变得容易。1.传送网的分层和分割传送网的分层和分割 传送网是分层的,由垂直方向的连续的传送网络层(即层网络)叠加而成,从从上上而而下下分分别别为为电电路路层层、通通道道层层和和传传输输媒媒质质层层(又又分分为为段段层层和和物物理理层层)。每一层网络为其相邻的高一层网络提供传送服务,同时又使用相邻的低一层网络所提供的传送服务。提供传送服务的层称为服服务务者者(Server),使用传送服务的层称为客客户户(Client),因而相邻的层网络之间构成了客户/服务者关系。图图8.1SDH传送网的分层模型传送网的分层模型 电路层网络电路层网络通道层网络通
8、道层网络传输媒质层网络传输媒质层网络64kb/s电电路交换网路交换网分组交分组交换换 网网租用线租用线电路网电路网SDHVC1n通道网通道网SDHVC3 通道网通道网传送网传送网示例示例光传输网光传输网无线传输网无线传输网n1,2 SDH传送网分层模型如图所示。自上而下依次为电路层网络、通道层网络和传输媒质层网络。电电路路层层网网络络涉及到电路层接入点之间的信息传递并直接为用户提供通信业务,如如电电路路交交换换业业务务、分分组组交交换换业业务务、租租用用线线业务和业务和B-ISDN虚通路等。虚通路等。根据提供业务的不同可以分为不同的电路层网络,如64 kb/s电路交换网、分组交换网、租用线电路
9、网和ATM交换网等。电路层网络的设备包括用于各种交换业务的交换机(例如电路交换机或分组交换机)和用于租用线业务的交叉连接设备等。电路层网络与相邻的通道层网络是相互独立的。通道层网络用于通道层接入点之间的信息传递并支持不同类型的电路层网络,为电路层网络提供传送服务,其提供传输链路的功能与PDH中的2 Mb/s、34 Mb/s和140Mb/s,SDH中的VC11、VC12、VC2、VC3 和VC4,以及BISDN中的虚通道功能类似。能够对通道层网络的连接性进行管理控制是SDH网的重要特性之一,SDH传送网中的通道层网络还可进一步分为:高阶通道层网络高阶通道层网络低阶通道层网络低阶通道层网络 传传输
10、输媒媒质质层层网网络络为通道层网络结点提供合适的通道容量,并且可以进一步分为:段段层层网网络络:为了保证通道层的两个结点间信息传递的完整性。物物理理媒媒质质层层网网络络(简简称称物物理理层层):指具体的支持段层网络的传输媒质,如光缆或无线。SDH网中的段层网络还可以进一步细分为:复用段层网络复用段层网络涉及复用段终端之间的端到端的信息传递 再再生生段段层层网网络络涉及再生器之间或再生器与复用段终端之间的信息传递。一个完整的SDH传送网分层模型如图所示。图图8.2SDH传送网完整分层模型传送网完整分层模型VC11VC12VC2VC3电电路路层层网网络络VC3VC4复用段层网络复用段层网络再生段层
11、网络再生段层网络低阶低阶通道层通道层高阶高阶通道层通道层段层段层物理层网络物理层网络电路层电路层通道层通道层传输传输媒质层媒质层SDH传送层传送层 将传送网分为独立的三层,每层能在与其它层无关的情况下单独加以规定,可以较简便地对每层分别进行设计与管理;每个层网络都有自己的操作和维护能力;从网络的观点来看,可以灵活地改变某一层,不会影响到其它层。传送网分层后,每一层网络仍然很复杂,地理上覆盖的范围很大。为了便于管理,在分层的基础上,将每一层网络在水平方向上按照该层内部的结构分割为若干个子网和链路连接。分割往往是从地理上将层网络再细分为:国国际际网网、国国内内网网和地地区区网网等,并独立地对每一部
12、分行使管理。图 8.3 给出了传送网分割概念与分层概念的一般关系。图图8.3传送网的分割传送网的分割(a)分层概念;分层概念;(b)分割概念分割概念电路层网络电路层网络通道层网络通道层网络传输媒质层网络传输媒质层网络子网子网链路链路层网络层网络分层视图分层视图(客户客户/服务者联系服务者联系)分割视图分割视图(a)(b)采用分割的概念可以方便地在同一网络层内对网络结构进行规定,允许层网络的一部分被层网络的其余部分看作一个单独实体;可以按所希望的程度将层网络递归分解表示,为层网络提供灵活的连接能力,从而方便网络管理,也便于改变网络的组成并使之最佳化。链链路路是代表一对子网之间有固定拓扑关系的一种
13、拓扑元件,用来描述不同的网络设备连接点间的联系,例如两个交叉连接设备之间的多个平行的光缆线路系统就构成了链路。2.传送网的功能结构传送网的功能结构 图为传送网的功能模型示例。层网或子网之间通过连连接接(网网络络连连接接、子子网网连连接接、链链路路连连接接)和适适配配(如如层层间间适适配配,包包括括复复用用解解复复用用、编编码码解解码码、定定位位与与调调整整、速速率率变变化化等等)构成整个传送网。相邻的层间符合客户/服务者关系。图图8.4传送网的功能模型传送网的功能模型SNCSNCTCPCPLCCPLCCPLCCPTCPAPAPSNCAPAP路径路径网络连接网络连接链路连接链路连接路径路径路径终
14、端路径终端客户层到服务层客户层到服务层适配适配TCP路径终端路径终端路径终端路径终端客户层到服务层客户层到服务层适配适配TCP路径终端路径终端客户层网络客户层网络服务层网络服务层网络AP:接入点接入点CP:连连接点接点LC:链路:链路连连接接TCP:终端连接点终端连接点SNC:子网连接子网连接CP 8.2.2SDH网的物理拓扑网的物理拓扑 网络的物理拓扑泛指网络的形状,即网络结点和传输线路的几何排列,它反映了物理上的连接性。除了最简单的点到点的物理拓扑外,网络物理拓扑一般有5种类型:线形线形星形星形树形树形环形环形网孔形网孔形1.线形线形 将通信网的所有站点串联起来,并使首末两个点开放,就形成
15、了线形拓扑。在这种拓扑结构中,要使两个非相邻点之间完成连接,其间的所有点都必须完成连接功能。这是SDH早期应用的比较经济的网络拓扑形式,首末两端使用终终端端复复用用器器(TM),中间各点使用分插复用器分插复用器(ADM)。图图8.5(a)SDH网网络络的的物物理理拓拓扑扑:线形线形(a)2.星形星形 当通信网的所有点中有一个特殊的点与其余点以辐射的形式直接相连,而其余点之间相互不能直接相连时,就形成了星形拓扑,又称枢枢纽纽形形拓拓扑扑。在这种拓扑结构中,除了特殊点外的任意两点间的连接都是通过特殊点进行的,特殊点为经过的信息流进行路由选择并完成连接功能。这种网络拓扑可以将特殊点(枢纽站)的多个光
16、纤终端综合成一个,具有灵活的带宽管理,能节省投资和运营成本,但是在特殊点存在失效问题和瓶颈问题。(b)图图8.5(b)SDH网络的物网络的物理拓扑:星形理拓扑:星形3.树形树形 将点到点拓扑单元的末端点连接到几个特殊点就形成树形拓扑树形拓扑。树形拓树形拓扑可以看成是线形拓扑和扑可以看成是线形拓扑和星形拓扑的结合。星形拓扑的结合。这种拓扑结构在特殊点也存在瓶颈问题和光功率预算限制问题,特别适用于广播式业务,但不适用于提供双向通信业务。(c)图图8.5(c)SDH网络的物理拓扑:树形网络的物理拓扑:树形4.环形环形 将通信网的所有站点串联起来首尾相连,而且没有任何点开放,就形成了环形网。将线形结构
17、的两个首尾开放点相连就变成了环形网。在环形网中,要完成两个非相邻点之间的连接,这两点之间的所有点都必须完成连接功能。环形网的最大优点是具有很高的网络生存性,因而在SDH网中受到特别的重视。(d)图图8.5(d)SDH网络的物理拓扑:网络的物理拓扑:环形环形 图图8.5(e)SDH网络的物理拓扑:网络的物理拓扑:网孔形网孔形(e)5.网孔形网孔形 当通信网的许多点直接互连时就形成了网孔形拓扑。如果所有的点都直接互连时就称为理想的网孔形。在非理想的网孔形中,没有直接相连的两个点之间需要经由其它点的转接功能才能实现连接。网孔形的优点是不存在如星形拓扑那样的瓶颈问题和失效问题,两点间有多种路由可选;缺
18、点是结构复杂、成本较高。上述的拓扑结构都有各自的特点,在网中都有不同程度的应用。网络拓扑的选择要考虑的因素很多,如网络的生存性是否高,网络配置是否容易,网络结构是否适于引进新业务等。一个实际网络的不同部分适宜采用的拓扑结构也有可能不同,例如本地网适宜采用环形和星形拓扑结构,有时也可用线形拓扑,市内局间中继网适宜采用环形和线形拓扑,而长途网可能采用网孔形拓扑。8.2.3自愈网自愈网 随着人类社会进入信息社会,人们对通信的依赖性越来越大,对通信网络生存性的要求也越来越高,一种称为自自愈愈网网(Self-healingNetwork)的概念应运而生。自自愈愈网网就是无需人为干预,网络就能在极短的时间
19、内从失效故障中自动恢复,使用户感觉不到网络已出了故障。基基本本原原理理就就是是:使网络具备发现替代传输路由并重新确立通信的能力。自愈网的概念只涉及重新确立通信,不管具体失效元部件的修复或更换,后者仍需人员干预才能完成。PDH系统采用的线线路路保保护护倒倒换换方方式式是最简单的自愈网形式。但是当光缆被切断时,往往是同一缆内的所有光纤(包括主用和备用)都被切断,在这种情况下上述保护方式就无能为力了。改改善善网网络络生生存存性性的的最最好好办办法法是是:将网络结点连成一个环形,形成所谓的自自愈愈环环(SelfhealingRing)。环形网的结点可以是ADM,也可以是DXC,但通常由ADM构成。SD
20、H的特色之一便是能够利用ADM的分插复用能力构成自愈环。自愈环结构自愈环结构可分为两大类:通通道道倒倒换换环环属于子网连接保护,其业务量的保护是以通道为基础,是否倒换以离开环的每一个通道信号质量的优劣而定,通常利用通道AIS信号来决定是否应进行倒换。复复用用段段倒倒换换环环属于路径保护,其业务量的保护以复用段为基础,以每对结点的复用段信号质量的优劣来决定是否倒换。通道倒换环与复用段倒换环的一个重要区别是前者往往使用专用保护,即正常情况下保护段也在传业务信号,保护时隙为整个环专用;而后者往往使用公用保护,即正常情况下保护段是空闲的,保护时隙由每对结点共享。如果按照进入环的支路信号与由该支路信号分
21、路结点返回的支路信号方向是否相同,又可以将自愈环分为:单向环单向环 双向环双向环 正常情况下,单向环中所有业务信号按同一方向在环中传输。双向环中进入环的支路信号按一个方向传输,而由该支路信号分路结点返回的支路信号按相反的方向传输。如果按照一对结点间所用光纤的最小数量还可以分为:二纤环二纤环 四纤环四纤环 下面以四个结点的环为例,介绍4种典型的自愈环结构。CA ACS1P1ABDCP1S1CA AC(a)CAACS1P1ABDCP1S1CA AC(b)倒换倒换8.6二纤单向通道倒换环二纤单向通道倒换环1.二纤单向通道倒换环二纤单向通道倒换环 二纤单向通道倒换环如图所示。通常单向环由两根光纤来实现
22、,S1光纤用来携带业务信号,P1光纤用来携带保护信号。这种环采用“首端桥接,首端桥接,末端倒换末端倒换”结构。例如,在结点A进入环传送给结点C的支路信号(AC)同时馈入S1和P1向两个不同方向传送到C点,其中S1光纤按顺时针方向,P1光纤按逆时针方向,C点的接收机同时收到两个方向传送来的支路信号,择优选择其中一路作为分路信号。正常情况下,S1传送的信号为主信号。同理,在C点进入环传送至结点A的支路信号(CA)按上述同样的方法传送到结点A,S1光纤所携带的CA信号为主信号。当BC结点间的光缆被切断时,两根光纤同时被切断,从A经S1光纤到C的AC信号丢失,结点C的倒换开关由S1转向P1,结点C接收
23、经P1光纤传送的AC信号,从而使AC间业务信号不会丢失,实现了保护作用。故障排除后,倒换开关返回原来的位置。2.二纤单向复用段倒换环二纤单向复用段倒换环 二纤单向复用段倒换环的结构如图所示。这是一种路径保护方式。在这种环形结构中每一结点都有一个保护倒换开关。正常情况下,S1光纤传送业务信号,P1光纤是空闲的。当BC结点间光缆被切断,两根光纤同时被切断,与光缆切 断 点 相 邻 的 两 个 结 点 B和 C的 保 护 倒 换 开 关 将 利 用APS(AutomaticProtectionSwitching)协议执行环回功能。例如在B结点S1光纤上的信号(AC)经倒换开关从P1光纤返回,沿逆时针
24、方向经A结点和D结点仍然可以到达C结点,并经C结点的倒换开关环回到S1光纤后落地分路。故障排除后,倒换开关返回原来的位置。图图8.7二纤单向复用段倒换环二纤单向复用段倒换环CA ACS1P1ABDCP1S1CA AC(a)(b)倒换倒换CA ACS1P1ABDCP1S1CA AC 当BC结点间光缆被切断,两根光纤同时被切断,与光缆切断 点 相 邻 的 两 个 结 点 B和 C的 保 护 倒 换 开 关 将 利 用APS(AutomaticProtectionSwitching)协议执行环回功能。例如在B结点S1光纤上的信号(AC)经倒换开关从P1光纤返回,沿逆时针方向经A结点和D结点仍然可以到
25、达C结点,并经C结点的倒换开关环回到S1光纤后落地分路。故障排除后,倒换开关返回原来的位置。3.四纤双向复用段倒换环四纤双向复用段倒换环 通常双向环工作在复用段倒换方式,既可以是四纤又可以是二纤。四纤双向复用段倒换环的结构如图所示,它由两根业务光纤S1与S2(一发一收)和两根保护光纤P1与P2(一发一收)构成,其中S1光纤传送顺时针业务信号,S2光纤传送逆时针业务信号,P1与P2分别是和S1与S2反方向传输的两根保护光纤。每根光纤上都有一个保护倒换开关。正常情况下,从A结点进入环传送至C结点的支路信号顺时针沿光纤S1传输,而由C结点进入环传送至A结点的支路信号则逆时针沿光纤S2传输,保护光纤P
26、1和P2是空闲的。当BC结点间光缆被切断,四根光纤同时被切断。根据APS协议,B和C结点中各有两个倒换开关执行环回功能,从而环工作的连续性得以维持。故障排除后,倒换开关返回原来的位置。在四纤环中,仅仅光缆切断或结点失效才需要利用环回方式来保护,而如果是单纤或设备故障可以使用传统的复用段保护倒换方式。图图8.8四纤双向复用段倒换环四纤双向复用段倒换环CA ACS1P1S2P2ACA ACP2S2P1S1CDB(a)CA ACS1P1S2P2ACA ACP2S2P1S1CDB(b)倒换倒换 当BC结点间光缆被切断,四根光纤同时被切断。根据APS协议,B和C结点中各有两个倒换开关执行环回功能,从而环
27、工作的连续性得以维持。故障排除后,倒换开关返回原来的位置。在四纤环中,仅仅光缆切断或结点失效才需要利用环回方式来保护,而如果是单纤或设备故障可以使用传统的复用段保护倒换方式。4.二纤双向复用段倒换环二纤双向复用段倒换环 在四纤双向复用段倒换环中,光纤S1上的业务信号与光纤P2上的保护信号的传输方向完全相同。如果利用时隙交换技术,可以使光纤S1和光纤P2上的信号都置于一根光纤(称S1/P2光纤)中,例如S1/P2光纤的一半时隙用于传送业务信号,另一半时隙留给保护信号。图图8.9二纤双向复用段倒换环二纤双向复用段倒换环S1/P2ABDCA AC(a)S2/P1S2/P1S1/P2S1/P2ABDC
28、A AC(b)S2/P1S2/P1S1/P2CC倒换倒换CA ACCA AC 同样,光纤S2和光纤P1上的信号也可以置于一根光纤(称S2/P1光纤)上。这样S1/P2光纤上的保护信号时隙可以保护S2/P1光纤上的业务信号,S2/P1光纤上的保护信号时隙可保护S1/P2光纤上的业务信号,于是四纤环可以简化为二纤环,如图所示。当BC结点间光缆被切断,二根光纤也同时被切断,与切断点相邻的B和C结点中的倒换开关将S1/P2光纤与S2/P1光纤沟通,利用时隙交换技术,可以将S1/P光纤和S2/P1光纤上的业务信号时隙转移到另一根光纤上的保护信号时隙,于是就完成了保护倒换作用。前面介绍了4种自愈环结构,通
29、常通道倒换环只工作在二纤单向方式,而复用段倒换环既可以工作在二纤方式,又可以工作在四纤方式,既可以单向又可以双向。自愈环种类的选择应考虑初建成本、要求恢复业务的比例、用于恢复业务所需要的额外容量、业务恢复的速度和易于操作维护等因素。8.3WDM光光网网络络 WDM技术极大地提高了光纤的传输容量,随之带来了对电交换结点的压力和变革的动力。为了提高交换结点的吞吐量,必须在交换方面引入光子技术,从而引起了WDM全光通信的研究。WDM全光通信网是在现有的传送网上加入光层,在光上进行分分插插复复用用(OADM)和交交叉叉连连接接(OXC),目的是减轻电结点的压力。由于WDM全光网络能够提供灵活的波长选路
30、能力,又称为波长选路网络波长选路网络(WavelengthRoutingNetwork)。基于WDM和波长选路的全光网络及其与单波长网络的关系,如图所示。图图8.10基于基于WDM和波长选路的光网络和波长选路的光网络E-XCE-XCE-XCE-XCOLTOXC光通道网络光通道网络单波长单波长网络网络单波长网络单波长网络 8.3.1光传送网的分层结构光传送网的分层结构 ITUT的G.872(草案)已经对光传送网的分层结构提出了建议。建议的分层方案是将光传送网分成:光通道层光通道层(OCH)光复用段层光复用段层(OMS)光传输段层光传输段层(OTS)与SDH传送网相对应,实际上是将光网络加到SDH
31、传送网分层结构的段层和物理层之间,如图所示。由于光纤信道可以将复用后的高速数字信号经过多个中间结点,不需电的再生中继,直接传送到目的结点,因此可以省去SDH再生段,只保留复用段,再生段对应的管理功能并入到复用段结点中。为了区别,将SDH的通道层和段层称为电通道层和电复用段层。电路层电路层通道层通道层复用段层复用段层再生段层再生段层物理层物理层(光纤光纤)SDH网络网络(a)图图8.11(a)光传送网的分层结构:光传送网的分层结构:SDH网络网络图图8.11(b)光传送网的分层结构:光传送网的分层结构:WDM网络网络电路层电路层电通道层电通道层电复用段层电复用段层光层光层物理层物理层(光纤光纤)
32、WDM光网络光网络(b)PDH通道层通道层SDH通道层通道层虚通道虚通道电复用段层电复用段层电复用段层电复用段层(没有没有)电路层电路层电路层电路层虚通道虚通道光通道层光通道层光复用段层光复用段层光传输段层光传输段层物理层物理层(光纤光纤)光传送网络光传送网络(c)图图8.11(c)光传送网的分层结构:电层和光层的分解光传送网的分层结构:电层和光层的分解 光光通通道道层层为不同格式(如PDH 565 Mb/s,SDH STMN,ATM信元等)的用户信息提供端到端透明传送的光信道网络功能,其中包括:为灵活的网络选路重新安排信道连接 为保证光信道适配信息的完整性处理光信道开销 为网络层的运行和管理
33、提供光信道监控功能。光复用段层光复用段层为多波长信号提供网络功能,它包括:为灵活的多波长网络选路重新安排光复用段连接 为保证多波长光复用段适配信息的完整性处理光复用段开销 为段层的运行和管理提供光复用段监控功能。光传输段层为光信号在不同类型的光媒质(如,光纤)上提供传输功能,包括对光放大器的监控功能。WDM光网络的结点主要有两种功能:光网络的结点主要有两种功能:光通道的上下路功能,实现这种功能的网络元件是:光光分插复用器分插复用器(OADM)。交叉连接功能,实现这种功能的网络元件是:光光交交叉叉连连接器接器(OXC)。8.3.2光分插复用器光分插复用器 在SDH传送网中,分分插插复复用用器器(
34、ADM)的功能是对不同的数字通道进行分下分下(drop)与插入插入(add)操作。与此类似,在WDM光网络也存在光光分分插插复复用用器器(OADM),其功能是在波分复用光路中对不同波长信道进行分下与插入操作。无论ADM还是OADM,都是相应网络中的重要单元。在WDM光网络的一个结点上,光分插复用器在从光波网络中分下或插入本结点的波长信号的同时,对其它波长的向前传输并不影响,并不需要把非本结点的波长信号转换为电信号再向前发送,因而简化了结点上信息处理,加快了信息的传递速度,提高了网络组织管理的灵活性,降低了运行成本。特别是当波分复用的波长数很多时,光分插复用器的作用就显得特别明显。光分插复用器光
35、分插复用器可以分为:光光/电电/光、全光。光、全光。光光/电电/光光型型光光分分插插复复用用器器是一种采用SDH光端机背靠背连接的设备,在已铺设的波分复用线路中已经使用了这种设备。但是光/电/光这种方法不具备速率和格式的透明性,缺乏灵活性,难以升级,因而不能适应WDM光网络的要求。全全光光型型光光分分插插复复用用器器是完全在光波域实现分插功能,具备透透明明性性、灵灵活活性性、可可扩扩展展性性和和可可重重构构性性,因而完全满足WDM光网络的要求。光分插复用器的核心部件是一个具有波长选择能力的光学或光子学元件,例如本书第7章介绍的几种光滤波器等。下面介绍几种光分插复用器的实现方法。1.基于解复用基
36、于解复用/复用结构的复用结构的OADM 这种光分插复用器采用解复用器和复用器背靠背的形式来实现,如图所示。在这种结构中,可以把需要在本地结点分下的一路或多路光波长信号很方便地从多波长输入信号中分离出来并连接到本地结点的光端机上,同时将本地结点需要发送的光波长通过复用器插入到多波长输出信号中去,其它波长的光信号可以不受影响地透明通过该分插复用器。但是,随着波分复用的波长数的增加,用于连接每个波长的光纤连线也会相应地增加,例如如果是32路波长的光分插复用器,考虑到双向传输总共需要64根光纤连线,这肯定会给设备管理带来困难。图图8.12基于解复用基于解复用/复用结构的复用结构的OADMMUXDMUX
37、多个波多个波长输入长输入多个波多个波长输出长输出Addl lSDropl lS 在这种结构中,由于不需要作分插的波长不能直接地通过,而解复用器和复用器的滤波特性会改变传输光谱的形状,因而会影响整个系统的传输性能。由于这种光分插复用器使用了光解复用器和复用器,如果系统要增加波长,就必须改造甚至更换解复用器和复用器,因而这种光分插复用器不具备波长透明性。2.基基于于光光纤纤马马赫赫-曾曾德德尔尔干干涉涉仪仪加加上上光光纤纤布布喇喇格格光光栅栅结结构构的的OADM 图8.13 所示的是基于平衡的马马赫赫-曾曾德德尔尔干干涉涉仪仪(MZI)加上光纤布喇格光栅光纤布喇格光栅(FBG)结构结构的全光纤型光
38、分插复用器。在理想情况下,耦合器的分束比为11,MZI的两臂等长,两光栅写入在等长位置上并接近全反射,因此与光纤布喇格光栅的峰值波长相对应的光波长,将在分分下下(drop)口口取出,而其它光波长信号将全部通过,并从输出输出(output)口口输出。图图8.13基于光纤马赫基于光纤马赫-曾德尔干涉仪加上光纤布喇格光栅结构的曾德尔干涉仪加上光纤布喇格光栅结构的OADM 而且这种结构是左右对称的,同样可以插入与光栅峰值波长相对应的光波长信号。但是实际上要做到两个耦合器、两个光栅和两臂长完全相同是很困难的,因此要实现它也很困难。实实现现上上述述马马赫赫-曾曾德德尔尔结结构构可可采采用用一一种种等等效效
39、变变通通的的方方法法:在双芯光纤上连续采用熔融拉锥方法制成有一定距离的两个3 dB定向耦合器,然后在两个耦合器之间的光纤上一次写入-曾德尔结构和光栅反射路径,但是要从双芯光纤中引出光信号需要特殊的光纤连接线。3.基于光纤耦合器加上光纤布喇格光栅结构的基于光纤耦合器加上光纤布喇格光栅结构的OADM图8.14 示出基基于于光光纤纤耦耦合合器器加加上上光光纤纤布布喇喇格格光光栅栅结结构构的的OADM。这种结构是在光纤定向耦合器的腰区写入光栅,如果在入射光中某一波长的光信号与光栅的峰值波长在波长上一致,就会形成选择性反射。此处定向耦合器中两根光纤中的一根已经过预处理(熔融拉细),使两根光纤的芯径略有差
40、别,因此在两根光纤中模式传播常数稍微有些不同。选择适当的光栅常数,使反射模式的耦合恰好发生在入射光纤基模与另一根光纤的反方向传输基模之间。要实现这种结构需要复杂的特殊制作工艺,因而不适宜大量制作。图图8.14基于光纤耦合器加上光纤布喇格光栅结构的基于光纤耦合器加上光纤布喇格光栅结构的OADM4.基于光纤光栅加上光纤环行器结构的基于光纤光栅加上光纤环行器结构的OADM 图示出基于光纤光栅加上光纤环行器结构的OADM,采用光纤环行器和光纤光栅的结合可以实现多个波长的分插复用。图图8.15基于光纤光栅加上光纤环行器结构的基于光纤光栅加上光纤环行器结构的OADMDMUXl l1,l l2l lmDro
41、pMUXAdd可调谐光纤光栅可调谐光纤光栅环行器环行器多个波长输入多个波长输入环行器环行器多个波长输出多个波长输出123l l1,l l2l lm132 与基于马赫-曾德尔加上光纤布喇格光栅结构相比,这种结构对每一个波长只需一个而不是一对光栅,结构较为简单,性能较为稳定。在两个环行器之间接入m个光纤光栅,在两个环行器的端口3分别接入解复用器和复用器,这样就可以分下和插入m个波长信号,而其它的没有被光纤光栅反射的光信号,无阻挡地从输出端口输出。如果采用可调谐光纤光栅,就可以得到在调谐范围内的任意波长信号。最后还可以通过不同组合形式的光开关,从m个波长中选取任意的分插波长。在这种结 构中,由于环行
42、器的回波损耗很大,所以根本不需要外加隔离器。5.基于介质膜滤波器加上光纤环行器结构的基于介质膜滤波器加上光纤环行器结构的OADM 图示出基基于于介介质质膜膜滤滤波波器器加加上上光光纤纤环环行行器器结结构构的的OADM,其中使用了多多层层介介质质膜膜(MultilayerDielectricFilm)滤滤波器波器,2光开关和光纤环行器等。多层介质膜滤波器由于其良好的温度稳定性目前已经在商业的波分复用系统中使用。多波长光信号从输入端经环行器到达滤波器,由于介质膜滤波器属于带通滤波器,因此只有位于通带内的波长才可以通过滤波器,其它波长则被反射回环行器。通过滤波器的波长由光开关选择从分下(drop)口
43、输出,插入的波长经过右边的同波长滤波器再通过右边环行器而输出。从左面滤波器反射回左面环行器的光从端口2到端口3再进入下面环行器的端口1,重复以上过程,每经过一个环行器和滤波器组合后,其余波长则继续往下走。如果不在本结点作分插复用的波长就再连接到右侧的光纤环行器,然后依次经过环行器和多层介质膜带通滤波器,一直传输到多波长输出端口。图图8.16基于介质膜滤波器加上光纤环行器结构的基于介质膜滤波器加上光纤环行器结构的OADMl l1Addl l1l l1Dropl l121323l l2Addl l2l l2Dropl l2232l l3Addl l3l l3Dropl l3232l l4Addl
44、l4l l4Dropl4232111131313多个波多个波长输入长输入环行器环行器带通介质带通介质膜滤波器膜滤波器22SOA开关开关带通介质带通介质膜滤波器膜滤波器环行器环行器多个波多个波长输出长输出可变衰减器可变衰减器 8.3.3光交叉连接器光交叉连接器 光光交交叉叉连连接接器器(OXC:OpticalCrossconnect)是光波网络中的一个重要网络单元,其功能可以与时分复用网络中的交换机类比,主要用来完成多波长环网间的交叉连接,作为网格状光网络的结点,目的是实现光波网的自动配置、保护/恢复和重构。光交叉连接光交叉连接通常分为三类:光纤交叉连接光纤交叉连接(FXC:FiberCross
45、connect)波波长长固固定定交交叉叉连连接接(WSXC:WavelengthSelectiveCrossconnect)波波长长可可变变交交叉叉连连接接(WIXC:WavelengthInterchangingCrossconnect)。光光纤纤交交叉叉连连接接器器连接的是多路输入输出光纤,如图所示,每根光纤中可以是多波长光信号。在这种交叉连接器中,只有空分交换开关,交换的基本单位是一路光纤,并不对多波长信号进行解复用,而是直接对波分复用光信号进行交叉连接。这种交叉连接器在WDM光网络中不能发挥多波长通道的灵活性,不能实现波长选路,因而很少在WDM网络结点中单独使用。图图8.17光纤交叉连
46、接光纤交叉连接 波波长长固固定定交交叉叉连接的典型结构如图8.18 所示,多路光纤中的光信号分别接入各自的波分解复用器,解复用后的相同波长的信号进行空分交换,交换后的各路相同波长的光信号分别进入各自输出口的复用器,最后复用后从各输出光纤输出。在这种结构中由于不同光纤中的相同波长之间可以进行交换,因而可以较灵活地对波长进行交叉连接,但是这种结构无法处理两根以上光纤中的相同波长光信号进入同一根输出光纤问题,即存在波长阻塞问题。而波长可变的交叉连接可以解决波长阻塞问题。图图8.18波长固定交叉连接波长固定交叉连接DMUXMM开关开关l l1MUXDMUXMM开关开关l l2MUXDMUXMM开关lN
47、MUXl l1l l2l lNl l1l l2l lNl l1l l2l lN光纤光纤2光纤光纤 1光纤光纤 M光纤光纤2光纤光纤 1光纤光纤 M3.波长可变交叉连接波长可变交叉连接 在波长可变交叉连接器中,使用波波长长变变换换器器(WavelengthConverter)对光信号进行波长变换,因而各路光信号可以实现完全灵活的交叉连接,不会产生波长阻塞。研究表明,在光交叉连接器中对各波长通路部分配备波长变换器和全部配备波长变换器所达到的通过率特性几乎相同。图为一种带带专专用用波波长长变变换换器器的的波波长长可可变变交交叉叉连连接接器器(WIXC:WithdedicatedWavelengthC
48、onverters)结构。这种结构中每一个波长经过空分交换后都配备有波长变换器。设输入输出光纤数为M,每根光纤中波长数为N,若要实现交叉连接则共需要MN个波长变换器。在这种结构中,每根输入光纤中每个波长都可以连接转换成任意一根输出光纤中任意一个波长,不存在波长阻塞。但是在一般情况下并不是所有波长都需要进行波长变换,因而这种结构的波长变换器的利用率不高,很不经济。图图8.19专用波长变换器的波长可变交叉连接专用波长变换器的波长可变交叉连接 l l1l l2l lNDMUXl l1l l2l lNDMUXl l1l l2l lNDMUXl l1l l2l lNMUXl l1l l2l lNMUXl
49、 l1l l2l lNMUX光纤光纤1光纤光纤2光纤光纤M光纤光纤1光纤光纤2光纤光纤M波长变换器波长变换器空间光开关矩阵空间光开关矩阵 若要提高波长变换器的利用率,可采取所有端口共用一组波长变换器的办法,图是所所有有输输入入波波长长共共用用一一组组波波长长变变换换器器情情况。况。需要进行变换的波长由光开关交换后进入共用的波长变换器,经过变换的波长再次进入光开关与其它波长一起交换到所要输出的光纤中去。图图8.20共享波长变换器的波长可变交叉连接器共享波长变换器的波长可变交叉连接器l l1l l2l lNDMUXl l1l l2l lNDMUXl l1l l2l lNDMUXl l1l l2l
50、lNMUXl l1l l2l lNMUXl l1l l2l lNMUX光纤光纤1光纤光纤2光纤光纤M光纤光纤1光纤光纤2光纤光纤M波长变换器波长变换器空间光开关矩阵空间光开关矩阵 4.交叉连接的多层结构交叉连接的多层结构 在实际应用中并不是所有的交叉连接都要在波长级上进行。当业务量很大时,多路光纤上的信号直接进行光纤交叉连接(FXC),并不需要对每根光纤的波长进行解复用与复用。图 8.21 所示为交叉连接的多层结构,最上层是电的交叉连接交叉连接(EXC)中间层是波波长长交交叉叉连连接接,可以是波波长长固固定定交交叉叉连连接接(WSXC),也可以是波长可变交叉连接波长可变交叉连接(WIXC)底层