《高一数学教案:函数的表示法.docx》由会员分享,可在线阅读,更多相关《高一数学教案:函数的表示法.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 高一数学教案:函数的表示法_高一数学教案全套 一、教材分析 1、 教材的地位和作用: 函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的根底,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确敏捷地加以应用。本课中对函数概念理解的程度会直接影响其它学问的学习,所以函数的第一课时特别的重要。 2、 教学目标及确立的依据: 教学目标: (1) 教学学问目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。 (2) 力量训练目标:通过教学培育的抽象概括力量、规律思维力量。 (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互
2、联系和相互制约的辩证唯物主义观点。 教学目标确立的依据: 函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮忙学好其他的内容。而把握好函数的概念是学好函数的基石。 3、教学重点难点及确立的依据: 教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。 教学难点:映射的概念,函数近代概念,及函数符号的理解。 重点难点确立的依据: 映射的概念和函数的近代定义抽象性都比拟强,要求学生的理性熟悉的力量也比拟高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题消失,所以近
3、年来有一种“函数热”的趋势,所以本节的重点难点必定落在映射的概念和函数的近代定义及函数符号的理解与运用上。 二、教材的处理: 将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际动身调动学生的学习热忱与参加意识,运用引导比照的手法,启发引导学生进展有目的的反复比拟几个概念的异同,使真正对函数的概念有很精确的熟悉。 三、教学方法和学法 教学方法:讲授为主,自主预习为辅。 依据是:由于以新的观点熟悉函数概念及函数符号与运用时,更重要的是必需给
4、学生讲清晰概念及留意事项,并通过师生的共同争论来帮忙学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和学问构造中打上深刻的烙印,为能学好后面的学问打下坚实的根底。 学法:四、教学程序 一、课程导入 通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。 例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起? 二. 新课讲授: (1) 接着再通过幻灯片给出六组学生熟识的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:ab,及原像和像的定义。强
5、调指出非空集合a到非空集合b的映射包括三局部即非空集合a、b和a到b的对应法则 f。进一步引导推断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有确定的元素与之对应。 (2)稳固练习课本52页第八题。 此练习能让更深刻的熟悉到映射可以“一对多,多对一”但不能是“一对多”。 例1. 给出学生初中学过的函数的传统定义和几个简洁的一次、二次函数,通过画图表示这些函数的对应关系,引导发觉它们是特别的映射进而给出函数的近代定义(设a、b是两个非空集合,假如根据某种对应法则f,使得a中的任何一个元素在集合b中都有的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非
6、空集合a和b以及从a到b的对应法则f),并说明把函f:ab记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x)值叫做函数值,函数值的集合 f(x):xa叫做函数的值域。 并把函数的近代定义与映射定义比拟使熟悉到函数与映射的区分与联系。(函数是非空数集到非空数集的映射)。 再以让推断的方式给出以下关于函数近代定义的留意事项:2. 函数是非空数集到非空数集的映射。 3. f表示对应关系,在不同的函数中f的详细含义不一样。 4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。 5. 集合a中的数的任意性,集合b中数的性。 6. “f:ab”
7、表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且cb)。 三.讲解例题 例1.问y=1(xa)是不是函数? 解:y=1可以化为y=0*x+1 画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。 注:引导从集合,映射的观点熟悉函数的定义。 四.课时小结: 1. 映射的定义。 2. 函数的近代定义。 3. 函数的三要素及符号的正确理解和应用。 4. 函数近代定义的五大留意点。 五.课后作业及板书设计 书本p51 习题2.1的1、2写在书上3、4、5上交。 预习函数三要素的定义域,并能求简洁函数的定义域。 函数(
8、一) 一、映射: 2.函数近代定义: 例题练习 二、函数的定义 注15 1.函数传统定义 三、作业: 高一数学教案:对数函数 教学目标 1.把握对数函数的概念,图象和性质,且在把握性质的根底上能进展初步的应用. (1) 能在指数函数及反函数的概念的根底上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象. (2) 能把握指数函数与对数函数的实质去讨论熟悉对数函数的性质,初步学会用对数函数的性质解决简洁的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类争论等思想,注意
9、培育学生的观看,分析,归纳等规律思维力量. 3.通过指数函数与对数函数在图象与性质上的比照,对学生进展对称美,简洁美等审美教育,调动学生学习数学的积极性. 教学建议 教材分析 (1) 对数函数又是函数中一类重要的根本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的根底上引入的.故是对上述学问的应用,也是对函数这一重要数学思想的进一步熟悉与理解.对数函数的概念,图象与性质的学习使学生的学问体系更加完整,系统,同时又是对数和函数学问的拓展与延长.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的根底. (2) 本节的教学重点是理解对数函数的定义,把握
10、对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的根底上,故应成为教学的重点. (3) 本节课的主线是对数函数是指数函数的反函数,全部的问题都应围围着这条主线绽开.而通过互为反函数的两个函数的关系由已知函数讨论未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1) 对数函数在引入时,就应从学生熟识的指数问题动身,通过对指数函数的熟悉逐步转化为对对数函数的熟悉,而且画对数函数图象时,既要考虑到对底数 的分类争论而且对每一类问题也可
11、以多项选择几个不同的底,画在同一个坐标系内,便于观看图象的特征,找出共性,归纳性质. (2) 在本节课中结合对数函数教学的特点,肯定要让学生动手做,动脑想,大胆猜,要以学生的讨论为主,教师只是不断地反函数这条主线引导学生思索的方向.这样既增加了学生的参加意识又教给他们思索问题的方法,猎取学问的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣. 高一数学教案:指数函数教案 小编为网友整理的高一数学教案:指数函数教案,盼望对大家有所帮忙! 教学目标: 1、学问目标:使学生理解指数函数的定义,初步把握指数函数的图像和性质。 2、力量目标:通过定义的引入,图像特征的观看、发觉过程使学生懂得理
12、论与实践 的辩证关系,适时渗透分类争论的数学思想,培育学生的探究发觉力量和分析问题、解决问题的力量。 3、情感目标:通过学生的参加过程,培育他们手脑并用、多思勤练的良好学习习惯和勇于探究、锲而不舍的治学精神。 教学重点、难点: 1、 重点:指数函数的图像和性质 2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体 动感显示,通过颜色的区分,加深其感性熟悉。 教学方法:引导发觉教学法、比拟法、争论法 教学过程: 一、事例引入 T:上节课我们学习了指数的运算性质,今日我们来学习与指数有关的函数。什么是函数? S: - T:主要是表达两个变量的关系。我们来考虑一个与医学有关的例子
13、:大家对“非典”应当并不生疏,它与其它的传染病一样,有肯定的埋伏期,这段时间里病原体在机体内不断地生殖,病原体的生殖方式有许多种,分裂就是其中的一种。我们来看一种球菌的分裂过程: C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,-。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x ) S,T:(争论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式), 从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数点题。 二、指数函数的定义 C:定义: 函数 y = a x
14、(a0且a1)叫做指数函数, xR.。 问题 1:为何要规定 a 0 且 a 1? S:(争论) C: (1)当 a 0,a1) log0.50.6 ,log0.5 ,ln 师:请同学们观看一下中这两个对数有何特征? 生:这两个对数底相等。 师:那么对于两个底相等的对数如何比大小? 生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。 师:对,请表达一下这道题的解题过程。 生:对数函数的单调性取决于底的大小:当0 调递减,所以loga5.1loga5.9 ;当a1时,函数y=logax单调递 增,所以loga5.1 板书: 解:)当0 5.1loga5.9 )当a1时,函数y=loga
15、x在(0,+)上是增函数, 5.10,ln0,log0.51, log0.50.60时,就转化为不等式f(x)0,借助于函数图像与性质解决有关问题,而讨论函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题非常重要; (4)函数f(x)=(1+x)n (nN*)与二项式定理是亲密相关的,利用这个函数用赋值法和比拟系数法可以解决许多二项式定理的问题; (5)解析几何中的很多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,常常需要运用布列
16、方程或建立函数表达式的方法加以解决。 高一数学教案:集合的含义与表示 教学目标: (1) 了解集合、元素的概念,体会集合中元素的三个特征; (2) 理解元素与集合的“属于“和“不属于“关系; (3) 把握常用数集及其记法; 教学重点:把握集合的根本概念; 教学难点:元素与集合的关系; 教学过程: 一、引入课题 军训前学校通知:8月15日8点,高一年级在体育馆集合进展军训发动;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念-集合(宣布课题),即是一
17、些讨论对象的总体。 阅读课本p2-p3内容 二、新课教学 (一)集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能推断一个给定的东西是否属于这个总体。 2. 一般地,我们把讨论对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。 3. 思索1:推断以下元素的全体是否组成集合,并说明理由: (1) 大于3小于11的偶数; (2) 我国的小河流; (3) 非负奇数; (4) 方程的解; (5) 某校2023级新生;(6) 血压很高的人; (7) 的数学家; (8) 平面直角坐标系内全部第三象限的点 (9) 全班
18、成绩好的学生。 对学生的解答予以争论、点评,进而讲解下面的问题。 4. 关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个详细对象,则或者是A的元素,或者不是A的元素,两种状况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不一样的个体(对象),因此,同一集合中不应重复消失同一元素。 (3)无序性:给定一个集合与集合里面元素的挨次无关。 (4)集合相等:构成两个集合的元素完全一样。 5. 元素与集合的关系; (1)假如a是集合A的元素,就说a属于(belong to)A,记作:aA (2)假如a不是集合A的元素,就说a不属于(not belon
19、g to)A,记作:aA 例如,我们A表示“120以内的全部质数“组成的集合,则有3A 4A,等等。 6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C.表示,集合的元素用小写的拉丁字母a,b,c,.表示。 7.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R; (二)例题讲解: 例1.用“或“符号填空: (1)8 N; (2)0 N; (3)-3 Z; (4) Q; (5)设A为全部亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。 例2.已知集合p的元素为, 若3p且-1p,求实
20、数m的值。 (三)课堂练习: 课本p5练习1; 归纳小结: 本节课从实例入手,特别自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。 作业布置: 1.习题1.1,第1- 2题; 2.预习集合的表示方法。 高一数学教案设计:对数函数 教学目标 1.把握对数函数的概念,图象和性质,且在把握性质的根底上能进展初步的应用. (1) 能在指数函数及反函数的概念的根底上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象. (2) 能把握指数函数与对数函数的实质去讨论熟悉对数函数的性质,初步学会用对
21、数函数的性质解决简洁的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类争论等思想,注意培育学生的观看,分析,归纳等规律思维力量. 3.通过指数函数与对数函数在图象与性质上的比照,对学生进展对称美,简洁美等审美教育,调动学生学习数学的积极性. 教学建议 教材分析 (1) 对数函数又是函数中一类重要的根本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的根底上引入的.故是对上述学问的应用,也是对函数这一重要数学思想的进一步熟悉与理解.对数函数的概念,图象与性质的学习使学生的学问体系更加完整,系统,同时又是对数和函数学问的
22、拓展与延长.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的根底. (2) 本节的教学重点是理解对数函数的定义,把握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的根底上,故应成为教学的重点. (3) 本节课的主线是对数函数是指数函数的反函数,全部的问题都应围围着这条主线绽开.而通过互为反函数的两个函数的关系由已知函数讨论未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1) 对数函数在引入时
23、,就应从学生熟识的指数问题动身,通过对指数函数的熟悉逐步转化为对对数函数的熟悉,而且画对数函数图象时,既要考虑到对底数 的分类争论而且对每一类问题也可以多项选择几个不同的底,画在同一个坐标系内,便于观看图象的特征,找出共性,归纳性质. (2) 在本节课中结合对数函数教学的特点,肯定要让学生动手做,动脑想,大胆猜,要以学生的讨论为主,教师只是不断地反函数这条主线引导学生思索的方向.这样既增加了学生的参加意识又教给他们思索问题的方法,猎取学问的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣. 高中高一数学教案范文:指数函数 教学目标 1.使学生把握指数函数的概念,图象和性质. (1)能
24、依据定义推断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域. (2)能在根本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面熟悉指数函数的性质. (3) 能利用指数函数的性质比拟某些幂形数的大小,会利用指数函数的图象画出形如 的图象. 2. 通过对指数函数的概念图象性质的学习,培育学生观看,分析归纳的力量,进一步体会数形结合的思想方法. 3.通过对指数函数的讨论,让学生熟悉到数学的应用价值,激发学生学习数学的兴趣.使学生擅长从现实生活中数学的发觉问题,解决问题. 教学建议 教材分析 (1) 指数函数是在学生系统学习了函数概念,根本把握了函数的性质的根
25、底上进展讨论的,它是重要的根本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的根底,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点讨论. (2) 本节的教学重点是在理解指数函数定义的根底上把握指数函数的图象和性质.难点是对底数 在 和 时,函数值变化状况的区分. (3)指数函数是学生完全生疏的一类函数,对于这样的函数应怎样进展较为系统的理论讨论是学生面临的重要问题,所以从指数函数的讨论过程中得到相应的结论当然重要,但更为重要的是要了解系统讨论一类函数的方法,所以在教学中要特殊让学生去体会讨论的方法,以便能将其迁移到其他函数的讨论. 教法建议 (1)
26、关于指数函数的定义根据课本上说法它是一种形式定义即解析式的特征必需是 的样子,不能有一点差异,诸如 , 等都不是指数函数. (2)对底数 的限制条件的理解与熟悉也是熟悉指数函数的重要内容.假如有可能尽量让学生自己去讨论对底数,指数都有什么限制要求,教师再赐予补充或用详细例子加以说明,由于对这个条件的熟悉不仅关系到对指数函数的熟悉及性质的分类争论,还关系到后面学习对数函数中底数的熟悉,所以肯定要真正了解它的由来. 关于指数函数图象的绘制,虽然是用列表描点法,但在详细教学中应避开描点前的盲目列表计算,也应避开盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简洁的争论,取得对要画图象的存在范围,大致特征,变化趋势的也许熟悉后,以此为指导再列表计算,描点得图象. 感谢您拜读范文资讯网教案频道的“高一数学教案:函数的表示法”一文,盼望“高一数学教案:函数的表示法”能解决您的教案需求,同时,我们还为您精选预备的高一数学函数概念教案专题!