数字图像处理-车牌识别技术.ppt

上传人:wuy****n92 文档编号:88500321 上传时间:2023-04-26 格式:PPT 页数:29 大小:496.50KB
返回 下载 相关 举报
数字图像处理-车牌识别技术.ppt_第1页
第1页 / 共29页
数字图像处理-车牌识别技术.ppt_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《数字图像处理-车牌识别技术.ppt》由会员分享,可在线阅读,更多相关《数字图像处理-车牌识别技术.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、图像模式识别应用图像模式识别应用专题:车牌识别技术专题:车牌识别技术图像分析处理技术的综合应用图像分析处理技术的综合应用一、车牌识别技术简介一、车牌识别技术简介n n车牌识别是现代交通管理的重要措施,是车牌识别是现代交通管理的重要措施,是智能交通系统的重要环节智能交通系统的重要环节n n内容:内容:车牌识别系统是采用数字摄像技术和计算车牌识别系统是采用数字摄像技术和计算机信息管理技术,对运行车辆实现智能管机信息管理技术,对运行车辆实现智能管理的综合运用技术理的综合运用技术n n理论基础:数字图像处理和模式识别理论基础:数字图像处理和模式识别n n车牌识别技术具有典型性,容易推广到其车牌识别技术

2、具有典型性,容易推广到其它识别对象它识别对象识别流程识别流程n n主要由三部分组成主要由三部分组成主要由三部分组成主要由三部分组成n n图像捕获一般采用图像捕获一般采用图像捕获一般采用图像捕获一般采用CCDCCDCCDCCD摄像头,包括整车图像或牌摄像头,包括整车图像或牌摄像头,包括整车图像或牌摄像头,包括整车图像或牌照照照照(一般为彩色图像一般为彩色图像一般为彩色图像一般为彩色图像)n n后两步由计算机实现后两步由计算机实现后两步由计算机实现后两步由计算机实现n n关键部分是第三步:关键部分是第三步:关键部分是第三步:关键部分是第三步:字符识别(字符识别(字符识别(字符识别(OCROCROC

3、ROCR)识别步骤识别步骤n n具体识别步骤如下具体识别步骤如下具体识别步骤如下具体识别步骤如下(不是唯一的不是唯一的不是唯一的不是唯一的):(1)(1)(1)(1)获取整车或局部图像;获取整车或局部图像;获取整车或局部图像;获取整车或局部图像;(2)(2)(2)(2)对获取车辆数字图像进行预处理;对获取车辆数字图像进行预处理;对获取车辆数字图像进行预处理;对获取车辆数字图像进行预处理;(3)(3)(3)(3)车牌定位;车牌定位;车牌定位;车牌定位;(4)(4)(4)(4)二值转换;二值转换;二值转换;二值转换;(5)(5)(5)(5)车牌分类;车牌分类;车牌分类;车牌分类;(6)(6)(6)

4、(6)车牌分割;车牌分割;车牌分割;车牌分割;(7)(7)(7)(7)字符识别;字符识别;字符识别;字符识别;(8)(8)(8)(8)结果优化结果优化结果优化结果优化(车牌模糊识别车牌模糊识别车牌模糊识别车牌模糊识别)。二、车牌定位与分割二、车牌定位与分割n n车牌定位:车牌定位:通过车牌区域的特征来判别牌通过车牌区域的特征来判别牌照的位置,将车牌从图像中分割出来照的位置,将车牌从图像中分割出来n n步骤:步骤:(1)(1)彩色图像灰度化彩色图像灰度化(2)(2)图像增强图像增强(3)(3)边缘检测边缘检测(4)(4)模板匹配模板匹配(5)(5)输出牌照子图像输出牌照子图像CCD CCD 输出

5、输出n nCCDCCD捕获的汽车图像捕获的汽车图像灰度图像灰度图像n n彩色图像灰度化彩色图像灰度化灰度增强灰度增强n n灰度增强改变对比度灰度增强改变对比度边缘提取边缘提取(方法多种方法多种)n n定位、分割后输出定位、分割后输出n n下步工作是对分割输出进行字符识别下步工作是对分割输出进行字符识别1 1、彩色图像灰度化、彩色图像灰度化n nCCDCCDCCDCCD摄像头输出的图像一般是摄像头输出的图像一般是摄像头输出的图像一般是摄像头输出的图像一般是24242424位真彩色图像,需位真彩色图像,需位真彩色图像,需位真彩色图像,需进行灰度化,使不同颜色车体统一化,同时实现进行灰度化,使不同颜

6、色车体统一化,同时实现进行灰度化,使不同颜色车体统一化,同时实现进行灰度化,使不同颜色车体统一化,同时实现快速处理快速处理快速处理快速处理n n两种制式都可以采用两种制式都可以采用两种制式都可以采用两种制式都可以采用PALPALPALPAL制:制:制:制:亮度亮度亮度亮度NTSCNTSCNTSCNTSC制:亮度制:亮度制:亮度制:亮度2 2、对比度增强、对比度增强n n利用灰度变换增强对比度,突出车牌区利用灰度变换增强对比度,突出车牌区利用灰度变换增强对比度,突出车牌区利用灰度变换增强对比度,突出车牌区n n一般采用截取式变换一般采用截取式变换一般采用截取式变换一般采用截取式变换 :常采用下式

7、常采用下式常采用下式常采用下式3 3、边缘检测、边缘检测n n主要方法主要方法(1)(1)对图像进行直分析处理对图像进行直分析处理(2)(2)提取车牌区域边界提取车牌区域边界(3)(3)灰度点运算灰度点运算(4)(4)模板匹配模板匹配(5)(5)算子法算子法(6)(6)形态学处理形态学处理(7)(7)其它边缘提取方法其它边缘提取方法车牌图像特征车牌图像特征n n车牌定位与分割的理论与方法是根据车牌图像的车牌定位与分割的理论与方法是根据车牌图像的车牌定位与分割的理论与方法是根据车牌图像的车牌定位与分割的理论与方法是根据车牌图像的特点来确定的特点来确定的特点来确定的特点来确定的n n车牌图像主要特

8、征有:车牌图像主要特征有:车牌图像主要特征有:车牌图像主要特征有:(1)(1)(1)(1)车牌区域内的边缘灰度直方图统计特征车牌区域内的边缘灰度直方图统计特征车牌区域内的边缘灰度直方图统计特征车牌区域内的边缘灰度直方图统计特征(2)(2)(2)(2)车牌的几何特征车牌的几何特征车牌的几何特征车牌的几何特征(3)(3)(3)(3)车牌区域的灰度分布特征车牌区域的灰度分布特征车牌区域的灰度分布特征车牌区域的灰度分布特征(4)(4)(4)(4)车牌区域的水平、垂直投影特征车牌区域的水平、垂直投影特征车牌区域的水平、垂直投影特征车牌区域的水平、垂直投影特征(5)(5)(5)(5)车牌形状特征和字符排列

9、格式特征车牌形状特征和字符排列格式特征车牌形状特征和字符排列格式特征车牌形状特征和字符排列格式特征(6)(6)(6)(6)车牌的形态学特征车牌的形态学特征车牌的形态学特征车牌的形态学特征(7)(7)(7)(7)频谱特征频谱特征频谱特征频谱特征车牌图像的组成车牌图像的组成n n组成:组成:组成:组成:省份汉字省份汉字省份汉字省份汉字(或其他汉字或其他汉字或其他汉字或其他汉字)+)+)+)+字母或阿拉伯数字,字母或阿拉伯数字,字母或阿拉伯数字,字母或阿拉伯数字,共共共共7 7 7 7位,即位,即位,即位,即 X1X1X1X1X1X1X1X1 X3X4X5X6X7X3X4X5X6X7X3X4X5X6

10、X7X3X4X5X6X7例:川例:川例:川例:川A A A A K0387K0387K0387K0387n n尺寸:尺寸:尺寸:尺寸:宽宽宽宽 45mm45mm45mm45mm、高、高、高、高 90mm90mm90mm90mm、间隔符宽、间隔符宽、间隔符宽、间隔符宽10mm10mm10mm10mm、单元、单元、单元、单元间隔间隔间隔间隔 12mm12mm12mm12mmn n字符笔画在竖直方向是字符笔画在竖直方向是字符笔画在竖直方向是字符笔画在竖直方向是连通连通连通连通的的的的n n牌底与字符颜色牌底与字符颜色牌底与字符颜色牌底与字符颜色对照大对照大对照大对照大,边缘非常丰富,边缘非常丰富,边

11、缘非常丰富,边缘非常丰富n n四类:蓝底白字、黄底黑字、黑底白字、四类:蓝底白字、黄底黑字、黑底白字、四类:蓝底白字、黄底黑字、黑底白字、四类:蓝底白字、黄底黑字、黑底白字、白底黑字白底黑字白底黑字白底黑字定位分割难点定位分割难点n n抓拍图像受环境因素干扰,特别环境光的抓拍图像受环境因素干扰,特别环境光的干扰,环境光太强时,图像淡薄,对比度干扰,环境光太强时,图像淡薄,对比度变差;变差;n n车尾有其它字符,使车牌定位困难;车尾有其它字符,使车牌定位困难;n n车牌大都存在污染而变脏;车牌大都存在污染而变脏;n n车牌部分被遮挡;车牌部分被遮挡;n n车牌图像为运动图像,拍摄时产生失真。车牌

12、图像为运动图像,拍摄时产生失真。模板匹配模板匹配n n用与图像中车牌一样大小的已知模板,在经对比用与图像中车牌一样大小的已知模板,在经对比用与图像中车牌一样大小的已知模板,在经对比用与图像中车牌一样大小的已知模板,在经对比度增强后的图像中,从起点度增强后的图像中,从起点度增强后的图像中,从起点度增强后的图像中,从起点(0,0)(0,0)(0,0)(0,0)开始,逐步平开始,逐步平开始,逐步平开始,逐步平移一一匹配,寻找最佳区域移一一匹配,寻找最佳区域移一一匹配,寻找最佳区域移一一匹配,寻找最佳区域n n匹配公式:匹配公式:匹配公式:匹配公式:最大值为输出最大值为输出最大值为输出最大值为输出已知

13、模板并不是某个具体的车牌,而是具有车牌已知模板并不是某个具体的车牌,而是具有车牌已知模板并不是某个具体的车牌,而是具有车牌已知模板并不是某个具体的车牌,而是具有车牌统计特性的通用模板,是一种统计特性的通用模板,是一种统计特性的通用模板,是一种统计特性的通用模板,是一种模糊匹配模糊匹配模糊匹配模糊匹配形态学处理确定车牌位置形态学处理确定车牌位置将图像二值化将图像二值化,通过膨胀、腐蚀操作定位通过膨胀、腐蚀操作定位车牌定位算法之一车牌定位算法之一(1)(1)(1)(1)对原始图像进行基于方向区域距离测度的彩色对原始图像进行基于方向区域距离测度的彩色对原始图像进行基于方向区域距离测度的彩色对原始图像

14、进行基于方向区域距离测度的彩色边缘检测得到原始边缘图像边缘检测得到原始边缘图像边缘检测得到原始边缘图像边缘检测得到原始边缘图像(2)(2)(2)(2)对原始边缘图像中的每一边缘点进行边缘颜色对原始边缘图像中的每一边缘点进行边缘颜色对原始边缘图像中的每一边缘点进行边缘颜色对原始边缘图像中的每一边缘点进行边缘颜色对检测,获得候选车牌边缘图像对检测,获得候选车牌边缘图像对检测,获得候选车牌边缘图像对检测,获得候选车牌边缘图像(3)(3)(3)(3)对候选车牌边缘图像进行闭运算获得连通域图对候选车牌边缘图像进行闭运算获得连通域图对候选车牌边缘图像进行闭运算获得连通域图对候选车牌边缘图像进行闭运算获得连

15、通域图像像像像(4)(4)(4)(4)计算各连通域的宽高比,剔除不在阈值范围内计算各连通域的宽高比,剔除不在阈值范围内计算各连通域的宽高比,剔除不在阈值范围内计算各连通域的宽高比,剔除不在阈值范围内的连通域,若只剩下一个连通域,则可确认为的连通域,若只剩下一个连通域,则可确认为的连通域,若只剩下一个连通域,则可确认为的连通域,若只剩下一个连通域,则可确认为车牌区域,转车牌区域,转车牌区域,转车牌区域,转(7)(7)(7)(7)车牌定位算法之一车牌定位算法之一(5)(5)(5)(5)若还有多于一个连通域,则计算若还有多于一个连通域,则计算若还有多于一个连通域,则计算若还有多于一个连通域,则计算r

16、 r r r。剔除不在阈。剔除不在阈。剔除不在阈。剔除不在阈值范围内的连通域,若只剩下一个连通域,则值范围内的连通域,若只剩下一个连通域,则值范围内的连通域,若只剩下一个连通域,则值范围内的连通域,若只剩下一个连通域,则可确认为车牌区域,转可确认为车牌区域,转可确认为车牌区域,转可确认为车牌区域,转(7)(7)(7)(7)(6)(6)(6)(6)若还有多于一个连通域,则对其进行彩色边缘若还有多于一个连通域,则对其进行彩色边缘若还有多于一个连通域,则对其进行彩色边缘若还有多于一个连通域,则对其进行彩色边缘检测然后进行水平扫描,统计每行灰度值为检测然后进行水平扫描,统计每行灰度值为检测然后进行水平

17、扫描,统计每行灰度值为检测然后进行水平扫描,统计每行灰度值为1 1 1 1的的的的个数个数个数个数N N N N,如果有连续,如果有连续,如果有连续,如果有连续M M M M行以上行以上行以上行以上Nn1,n2Nn1,n2Nn1,n2Nn1,n2,则可,则可,则可,则可认为此连通域为车牌区域认为此连通域为车牌区域认为此连通域为车牌区域认为此连通域为车牌区域(7)(7)(7)(7)在原始图像中提取车牌图像在原始图像中提取车牌图像在原始图像中提取车牌图像在原始图像中提取车牌图像三、车牌字符识别技术三、车牌字符识别技术n n与通用的与通用的与通用的与通用的OCROCROCROCR识别方法类似识别方法

18、类似识别方法类似识别方法类似n n模板匹配法模板匹配法模板匹配法模板匹配法首先对字符二值化,并归一化字符尺寸,然后进首先对字符二值化,并归一化字符尺寸,然后进首先对字符二值化,并归一化字符尺寸,然后进首先对字符二值化,并归一化字符尺寸,然后进行模板匹配,选取择最匹配输出行模板匹配,选取择最匹配输出行模板匹配,选取择最匹配输出行模板匹配,选取择最匹配输出n n神经网络匹配法,两种算法:神经网络匹配法,两种算法:神经网络匹配法,两种算法:神经网络匹配法,两种算法:(1)(1)(1)(1)先对各字符进行特征提取,利用特征训练网络先对各字符进行特征提取,利用特征训练网络先对各字符进行特征提取,利用特征

19、训练网络先对各字符进行特征提取,利用特征训练网络分类器,然后用分类器识别字符分类器,然后用分类器识别字符分类器,然后用分类器识别字符分类器,然后用分类器识别字符(2)(2)(2)(2)由网络对输入图像自动提取特征并识别由网络对输入图像自动提取特征并识别由网络对输入图像自动提取特征并识别由网络对输入图像自动提取特征并识别1 1、预处理、预处理n n车牌经定位、分割检出后,基本上具有被识别车牌经定位、分割检出后,基本上具有被识别车牌经定位、分割检出后,基本上具有被识别车牌经定位、分割检出后,基本上具有被识别的条件,但还需做适当预处理的条件,但还需做适当预处理的条件,但还需做适当预处理的条件,但还需

20、做适当预处理n n预处理:预处理:预处理:预处理:(1)(1)(1)(1)图像二值化图像二值化图像二值化图像二值化在彩色图像灰度化后,因车牌类型不同,会出在彩色图像灰度化后,因车牌类型不同,会出在彩色图像灰度化后,因车牌类型不同,会出在彩色图像灰度化后,因车牌类型不同,会出白底黑字和黑底白字两种,需要统一为一种白底黑字和黑底白字两种,需要统一为一种白底黑字和黑底白字两种,需要统一为一种白底黑字和黑底白字两种,需要统一为一种(2)(2)(2)(2)字符分割字符分割字符分割字符分割2 2、二值化、二值化n n二值化的关键是阈值的选择二值化的关键是阈值的选择二值化的关键是阈值的选择二值化的关键是阈值

21、的选择n n二种方法:全局阈值、局部阈值二种方法:全局阈值、局部阈值二种方法:全局阈值、局部阈值二种方法:全局阈值、局部阈值n n全局阈值全局阈值全局阈值全局阈值n n其中其中其中其中h h h hl l l l是灰度值为是灰度值为是灰度值为是灰度值为l l l l的像素个数。的像素个数。的像素个数。的像素个数。3 3、倾斜校正、倾斜校正n n提取的车牌图像有可能是倾斜的,为了便于识别,提取的车牌图像有可能是倾斜的,为了便于识别,提取的车牌图像有可能是倾斜的,为了便于识别,提取的车牌图像有可能是倾斜的,为了便于识别,需对图像进行倾斜度校正需对图像进行倾斜度校正需对图像进行倾斜度校正需对图像进行

22、倾斜度校正n n方法:哈夫方法:哈夫方法:哈夫方法:哈夫(Hough)(Hough)(Hough)(Hough)变换变换变换变换计算车牌图像上、下边界直线计算车牌图像上、下边界直线计算车牌图像上、下边界直线计算车牌图像上、下边界直线n n计算边界直线的倾斜度计算边界直线的倾斜度计算边界直线的倾斜度计算边界直线的倾斜度 P P P Pn n倾斜度校正倾斜度校正倾斜度校正倾斜度校正4 4、尺寸归一化、尺寸归一化n n字符的大小归一化可以简单地用统计分析法来完字符的大小归一化可以简单地用统计分析法来完字符的大小归一化可以简单地用统计分析法来完字符的大小归一化可以简单地用统计分析法来完成成成成n n归

23、一化内容归一化内容归一化内容归一化内容:(1)(1)(1)(1)位置归一化,即把字符移到规定的位置上,位置归一化,即把字符移到规定的位置上,位置归一化,即把字符移到规定的位置上,位置归一化,即把字符移到规定的位置上,使字符的质心对中,也可字符边框定位使字符的质心对中,也可字符边框定位使字符的质心对中,也可字符边框定位使字符的质心对中,也可字符边框定位(2)(2)(2)(2)大小归一化,使被识别字符具有同样大小大小归一化,使被识别字符具有同样大小大小归一化,使被识别字符具有同样大小大小归一化,使被识别字符具有同样大小5 5、字符识别、字符识别n n识别方法较多识别方法较多识别方法较多识别方法较多

24、n n匹配法识别匹配法识别匹配法识别匹配法识别n n采用相关函数作为相似度测度采用相关函数作为相似度测度采用相关函数作为相似度测度采用相关函数作为相似度测度其中,其中,其中,其中,T T T T为模板,为模板,为模板,为模板,S S S S为模板覆盖下的图像子块,为模板覆盖下的图像子块,为模板覆盖下的图像子块,为模板覆盖下的图像子块,i i i i、j j j j为子块左上角坐标,为子块左上角坐标,为子块左上角坐标,为子块左上角坐标,M M M M、N N N N为模板长和宽为模板长和宽为模板长和宽为模板长和宽6 6、字符优化、字符优化n n按照上述车牌定位和切割方法取得的单个字符图按照上述车

25、牌定位和切割方法取得的单个字符图按照上述车牌定位和切割方法取得的单个字符图按照上述车牌定位和切割方法取得的单个字符图像,可能存在字符与边框相连、字符变形和字符像,可能存在字符与边框相连、字符变形和字符像,可能存在字符与边框相连、字符变形和字符像,可能存在字符与边框相连、字符变形和字符断裂等情况,为此在真正识别之前需要对字符位断裂等情况,为此在真正识别之前需要对字符位断裂等情况,为此在真正识别之前需要对字符位断裂等情况,为此在真正识别之前需要对字符位图作进一步的技术处理;图作进一步的技术处理;图作进一步的技术处理;图作进一步的技术处理;n n常用的方法是将用于识别的字符位图按新的点阵常用的方法是

26、将用于识别的字符位图按新的点阵常用的方法是将用于识别的字符位图按新的点阵常用的方法是将用于识别的字符位图按新的点阵大小重新采样,然后搜索字符位图的准确上下左大小重新采样,然后搜索字符位图的准确上下左大小重新采样,然后搜索字符位图的准确上下左大小重新采样,然后搜索字符位图的准确上下左右边界值,依照字符位图的宽高值和新的边界值右边界值,依照字符位图的宽高值和新的边界值右边界值,依照字符位图的宽高值和新的边界值右边界值,依照字符位图的宽高值和新的边界值重新确定字符像素点,并排除非字符情况,如左重新确定字符像素点,并排除非字符情况,如左重新确定字符像素点,并排除非字符情况,如左重新确定字符像素点,并排

27、除非字符情况,如左右边界值之差过小、上下边界差过小等情况即认右边界值之差过小、上下边界差过小等情况即认右边界值之差过小、上下边界差过小等情况即认右边界值之差过小、上下边界差过小等情况即认为非字符。为非字符。为非字符。为非字符。7 7、字符类型、字符类型n n民用车汉字:京、津、晋、冀、蒙、辽、吉、黑、沪、苏、民用车汉字:京、津、晋、冀、蒙、辽、吉、黑、沪、苏、民用车汉字:京、津、晋、冀、蒙、辽、吉、黑、沪、苏、民用车汉字:京、津、晋、冀、蒙、辽、吉、黑、沪、苏、浙、皖、闽、赣、鲁、豫、鄂、湘、粤、桂、琼、川、贵、浙、皖、闽、赣、鲁、豫、鄂、湘、粤、桂、琼、川、贵、浙、皖、闽、赣、鲁、豫、鄂、湘

28、、粤、桂、琼、川、贵、浙、皖、闽、赣、鲁、豫、鄂、湘、粤、桂、琼、川、贵、云、藏、陕、甘、青、宁、新,渝云、藏、陕、甘、青、宁、新,渝云、藏、陕、甘、青、宁、新,渝云、藏、陕、甘、青、宁、新,渝”;n n英文字母:除英文字母:除英文字母:除英文字母:除“I I I I”外的外的外的外的“A A A AZ Z Z Z”其他字母;其他字母;其他字母;其他字母;n n数字:数字:数字:数字:0 0 0 09 9 9 9;n n数字和字母:数字和字母:数字和字母:数字和字母:“WJWJWJWJ”、“警警警警”+0+0+0+09 9 9 9;n n军用车汉字:甲、乙、丙、丁、戊、己、庚、辛、壬、癸、军用

29、车汉字:甲、乙、丙、丁、戊、己、庚、辛、壬、癸、军用车汉字:甲、乙、丙、丁、戊、己、庚、辛、壬、癸、军用车汉字:甲、乙、丙、丁、戊、己、庚、辛、壬、癸、子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥;n n民用车尾字:包括民用车尾字:包括民用车尾字:包括民用车尾字:包括“0 0 0 09 9 9 9、学、试、领、港、学、试、领、港、学、试、领、港、学、试、领、港”等字。等字。等字。等字。8 8、标准特征库、标准特征库n n将切分下来的字符图像变换到将切

30、分下来的字符图像变换到将切分下来的字符图像变换到将切分下来的字符图像变换到4040404040404040的点阵空间的点阵空间的点阵空间的点阵空间上,按照水平和垂直方向提取二值特征、按照字上,按照水平和垂直方向提取二值特征、按照字上,按照水平和垂直方向提取二值特征、按照字上,按照水平和垂直方向提取二值特征、按照字符结构在水平、垂直、左、右四个方向的几何投符结构在水平、垂直、左、右四个方向的几何投符结构在水平、垂直、左、右四个方向的几何投符结构在水平、垂直、左、右四个方向的几何投影图像特征建立多维特征库,其中标准汉字从宋影图像特征建立多维特征库,其中标准汉字从宋影图像特征建立多维特征库,其中标准

31、汉字从宋影图像特征建立多维特征库,其中标准汉字从宋体字库中选取,字母及数字从体字库中选取,字母及数字从体字库中选取,字母及数字从体字库中选取,字母及数字从OCR-AOCR-AOCR-AOCR-A字库中选取。字库中选取。字库中选取。字库中选取。对标准字符分别进行归一化、轮廓化和特征抽取,对标准字符分别进行归一化、轮廓化和特征抽取,对标准字符分别进行归一化、轮廓化和特征抽取,对标准字符分别进行归一化、轮廓化和特征抽取,标准模板就是从中抽取特征得到的特征向量。标准模板就是从中抽取特征得到的特征向量。标准模板就是从中抽取特征得到的特征向量。标准模板就是从中抽取特征得到的特征向量。1010、字符匹配、字

32、符匹配n n两种主要方法:模板匹配法和人工神经网络算法;两种主要方法:模板匹配法和人工神经网络算法;两种主要方法:模板匹配法和人工神经网络算法;两种主要方法:模板匹配法和人工神经网络算法;n n模板匹配算法首先把待识别字符二值化,并将其尺寸大模板匹配算法首先把待识别字符二值化,并将其尺寸大模板匹配算法首先把待识别字符二值化,并将其尺寸大模板匹配算法首先把待识别字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板小缩放为字符数据库中模板的大小,然后与所有的模板小缩放为字符数据库中模板的大小,然后与所有的模板小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹

33、配作为结果;进行匹配,最后选最佳匹配作为结果;进行匹配,最后选最佳匹配作为结果;进行匹配,最后选最佳匹配作为结果;n n基于人工神经网络的算法主要有两种:基于人工神经网络的算法主要有两种:基于人工神经网络的算法主要有两种:基于人工神经网络的算法主要有两种:(1)(1)一种是先对待识别字符进行特征提取,然后用所获得的特一种是先对待识别字符进行特征提取,然后用所获得的特一种是先对待识别字符进行特征提取,然后用所获得的特一种是先对待识别字符进行特征提取,然后用所获得的特征来训练神经网络分类器;征来训练神经网络分类器;征来训练神经网络分类器;征来训练神经网络分类器;(2)(2)另一种方法是直接把待处理图像输入网络,由网络自动另一种方法是直接把待处理图像输入网络,由网络自动另一种方法是直接把待处理图像输入网络,由网络自动另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。前一种方法识别结果与实现特征提取直至识别出结果。前一种方法识别结果与实现特征提取直至识别出结果。前一种方法识别结果与实现特征提取直至识别出结果。前一种方法识别结果与特征提取有关,而特征提取比较耗时,因此特征提取是特征提取有关,而特征提取比较耗时,因此特征提取是特征提取有关,而特征提取比较耗时,因此特征提取是特征提取有关,而特征提取比较耗时,因此特征提取是关键。关键。关键。关键。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁