《[苏教版]必修5简单线性规划课件ppt.ppt》由会员分享,可在线阅读,更多相关《[苏教版]必修5简单线性规划课件ppt.ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能xyo为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能可行域上的最优解可行域上的最优解为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能作出不等式组作出不等式组表示的平面区域表示的平面区域为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能XOYX-4y+3=0X=13x+5y-25=0ABCA:(5,2)B
2、:(1,1)C:(1,4.4)问题问题1 1:x 有无最大(小)值?有无最大(小)值?问题问题2 2:y 有无最大(小)值?有无最大(小)值?问题问题3 3:2 2x+y 有无最大(小)值有无最大(小)值?为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能XOYX-4y+3=0X=13x+5y-25=0ABCA:(5,2)B:(1,1)C:(1,4.4)2x+y=02x+y=1此时此时Z=3此时此时Z=12Zmax=12Zmin=3Z=2x+y为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中
3、小学图书室育人功能有关概念有关概念由由x,y 的不等式的不等式(或方程或方程)组成的不等式组称为组成的不等式组称为x,y 的的约束条件约束条件。关于。关于x,y 的一次不等式或方程的一次不等式或方程组成的不等式组称为组成的不等式组称为x,y 的的线性约束条件线性约束条件。欲达。欲达到最大值或最小值所涉及的变量到最大值或最小值所涉及的变量x,y 的解析式称的解析式称为为目标函数目标函数。关于。关于x,y 的一次目标函数称为的一次目标函数称为线性线性目标函数目标函数。求线性目标函数在线性约束条件下的。求线性目标函数在线性约束条件下的最大值或最小值问题称为最大值或最小值问题称为线性规划问题线性规划问
4、题。满足线。满足线性约束条件的解(性约束条件的解(x,y)称为)称为可行解可行解。所有可行。所有可行解组成的集合称为解组成的集合称为可行域可行域。使目标函数取得最大。使目标函数取得最大值或最小值的可行解称为值或最小值的可行解称为最优解最优解。为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能练习练习解下列线性规划问题:解下列线性规划问题:1、求、求z=2x+y的最大值,使式中的的最大值,使式中的x、y满足约束条件:满足约束条件:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功
5、能XOYABCy=x x+y=1y=-12x+y=0B:(-1,-1)C:(2,-1)Zmin=-3Zmax=3 目标函数:目标函数:Z=2x+y为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能解线性规划问题的步骤:解线性规划问题的步骤:(2 2)移:在线性目标函数所表示的一组平行)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域有公共线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;点且纵截距最大或最小的直线;(3 3)求:通过解方程组求出最优解;)求:通过解方程组求出最优解;(4 4)答:作出
6、答案。)答:作出答案。(1 1)画:画出线性约束条件所表示的可行域;)画:画出线性约束条件所表示的可行域;为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能结论:结论:1、线性目标函数的最大(小)值一般、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界在可行域的顶点处取得,也可能在边界处取得。处取得。2、求线性目标函数的最优解,要注意、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义分析线性目标函数所表示的几何意义在在y轴上的截距或其相反数。轴上的截距或其相反数。为深入学习习近平新时代中国特色社会主义思想
7、和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能2、求、求z=3x+y的最大值,使式中的的最大值,使式中的x、y满足约束条件满足约束条件 2x+3y 24 x-y 7 y 6 x 0 y 0讨论:讨论:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能XOYABCD712-768y=6x-y=72x+3y=24l0:3x+y=0l1思考:思考:目标函数:目标函数:Z=x+3y 目标函数:目标函数:Z=3x+y 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人
8、功能解线性规划问题的步骤:解线性规划问题的步骤:(2 2)移:在线性目标函数所表示的一组平行)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;点且纵截距最大或最小的直线;(3 3)求:通过解方程组求出最优解;)求:通过解方程组求出最优解;(4 4)答:作出答案。)答:作出答案。小结:小结:(1 1)画:画出线性约束条件所表示的可行域;)画:画出线性约束条件所表示的可行域;为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能结论:结论:1、线性目标函数的最大(小)值一般、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界在可行域的顶点处取得,也可能在边界处取得。处取得。2、求线性目标函数的最优解,要注意、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义分析线性目标函数所表示的几何意义在在y轴上的截距或其相反数。轴上的截距或其相反数。