第四章 晶体场、分子轨道理论.ppt
《第四章 晶体场、分子轨道理论.ppt》由会员分享,可在线阅读,更多相关《第四章 晶体场、分子轨道理论.ppt(91页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章晶体场、分子轨道理论一一 晶体场中晶体场中d轨道能级的分裂轨道能级的分裂1 正八面体场正八面体场八面体场中的八面体场中的d轨道轨道 d1构构型型正正离离子子它它处处于于一一个个球球壳壳的的中中心心,球球壳壳表表面面上上均均匀匀分分布布着着6个个单单位位的的负负电电荷荷,由由于于负负电电荷荷的的分分布布是是球球形形对对称称的的,因因而而不不管管这这个个电电子子处处在在哪哪条条d轨轨道道上上,它它所所受受到到的的负负电电荷荷的的排排斥斥作作用用都都是是相相同同的的,即即d轨道能量虽然升高轨道能量虽然升高,但仍保持五重简并。但仍保持五重简并。若若改改变变负负电电荷荷在在球球壳壳上上的的分分布布
2、,把把它它们们集集中中在在球球的的内内接接正正八八面面体体的的六六个个顶顶点点上上,且且这这六六个个顶顶点点均均在在x、y、z轴轴上上,每每个个顶顶点点的的电电量量为为1个个单单位位的的负负电电荷荷,由由于于球球壳壳上上的的总总电电量量仍仍为为6个个单单位位的的负负电电荷荷,因因而而不不会会改改变变对对d电电子子的的总总排排斥斥力力,即即不不会会改改变变d轨轨道道的的总总能能量量,但但是是那那个个单单电电子子处处在在不不同同的的d轨轨道道上上时时所所受受到到的的排排斥斥作用不再完全相同。作用不再完全相同。解得:解得:E(t2)1.78Dq E(e)2.67Dq tE(t2)E(e)(4/9)o
3、3E(t2)2 E(e)0 由由于于在在四四面面体体场场中中,这这两两组组轨轨道道都都在在一一定定程程度度下下避避开开了了配配体体、没没有有像像八八面面体体中中d轨轨道道与与配配体体迎迎头头相相撞撞的的情情况,可以预料分裂能况,可以预料分裂能t将小于将小于o,计算表明,计算表明 t(4/9)o 同样,根据重心守恒原理可以求出同样,根据重心守恒原理可以求出t2及及e轨道的相对轨道的相对能量能量:3 拉长的八面体拉长的八面体 在在拉拉长长八八面面体体中中,z轴轴方方向向上上的的两两个个配配体体逐逐渐渐远远离离中中心心原原子子,排排斥斥力力下下降降,即即dz2能能量量下下降降。同同时时,为为了了保保
4、持持总总静静电电能能量量不不变变,在在x轴轴和和y轴轴的的方方向向上上配配体体向向中中心心原原子子靠靠拢拢,从从而而dx2y2的的能能量量升升高高,这这样样eg轨轨道道发发生生分分裂裂。在在t2g三三条条轨轨道道中中,由由于于xy平平面面上上的的dxy轨轨道道离离配配体体要要近近,能能量量升升高高,xz和和yz平平面面上上的的轨轨道道dxz和和dyz离离配配体体远远因因而而能能量量下下降降。结结果果,轨轨道道也也发发生生分分裂裂。这这样样,5条条d轨轨道道分分成成四四组,能量从高到低的次序为组,能量从高到低的次序为:dx2y2,dz2,dxy,dxz和和dyz。4 4 平面正方形场平面正方形场
5、 四四个个配配体体只只在在x、y平平面面上上沿沿x和和y轴轴方方向向趋趋近近于于中中心心原原子子,因因dx2y2轨轨道道的的极极大大值值正正好好处处于于与与配配体体迎迎头头相相撞撞的的位位置置,受受排排斥斥作作用用最最强强,能能级级升升高高最最多多。其其次次是是在在xy平平面面上上的的dxy轨轨道道。而而dz2仅仅轨轨道道的的环环形形部部分分在在xy平平面面上上,受受配配体体排排斥斥作作用用稍稍小小,能能量量稍稍低低,简简并并的的dxz、dyz的的极极大大值值与与xy平平面面成成45角角,受受配配体体排排斥作用最弱,能量最低。斥作用最弱,能量最低。总之,总之,5条条d轨道在轨道在Sq场中分裂为
6、四组,由高到低的顺序是:场中分裂为四组,由高到低的顺序是:dx2y2,dxy,dz2,dxz和和dyz。d 轨道能级在不同配位场中的分裂轨道能级在不同配位场中的分裂 表4二二 分裂能和光谱化学序列分裂能和光谱化学序列 分裂能分裂能:中心离子的:中心离子的d轨道的简并能级因配位场轨道的简并能级因配位场的影响而分裂成不同组能级之间的能量差。的影响而分裂成不同组能级之间的能量差。分裂能的大小与下列因素有关:分裂能的大小与下列因素有关:1 配位场配位场亦即几何构型类型亦即几何构型类型 如如t(4/9)o (2)金属离子金属离子d轨道的主量子数轨道的主量子数 在在同同一一副副族族不不同同过过渡渡系系的的
7、金金属属的的对对应应配配合合物物中中,分分裂裂能能值值随随着着d轨轨道道主主量量子子数数的的增增加加而而增增大大。当当由由第第一一过过渡渡系系到到第第二二过过渡渡系系再再到到第第三三过过渡渡系系、分分裂裂能能依依次次递递增增4050%和和2025%。这这是是由由于于4d轨轨道道在在空空间间的的伸伸展展较较3d轨轨道道远远,5d轨轨道道在在空空间间的的伸伸展展又又比比4d轨轨道道远远,因因而而易易受受到到配配体体场场的的强烈作用之故。强烈作用之故。(1)金属离子的电荷金属离子的电荷 中中心心金金属属离离子子电电荷荷增增加加,值值增增加加。这这是是由由于于随随着着金金属属离离子子的的电电荷荷的的增
8、增加加,金金属属离离子子的的半半径径减减小小,因因而而配配体体更更靠靠近近金金属属离离子子,从从而而对对 d 轨轨道道产产生生的的影影响响增增大大之之故故,三三价价离子的分裂能离子的分裂能 比二价离子要大比二价离子要大4060%。2 金属离子金属离子 将将一一些些常常见见配配体体按按光光谱谱实实验验测测得得的的分分裂裂能能从从小小到到大大次次序排列起来,便得序排列起来,便得光谱化学序光谱化学序:这这个个化化学学序序代代表表了了配配位位场场的的强强度度顺顺序序。由由此此顺顺序序可可见见,对对同同一一金金属属离离子子,造造成成值值最最大大的的是是CN离离子子,最最小小的的是是I离离子子,通通常常把
9、把CN、NO2等等离离子子称称作作强强场场配配位位体体,I、Br、F离子称为离子称为弱场配位体弱场配位体。3 配体的本性配体的本性 须须指指出出的的是是,上上述述配配体体场场强强度度顺顺序序是是纯纯静静电电理理论论所所不不能能解解释释的的。例例如如OHOH比比H H2 2O O分分子子场场强强度度弱弱,按按静静电电的的观观点点OHOH带带了了一一个个负负电电荷荷,H H2 2O O不不带带电电荷荷,因因而而OHOH应应该该对对中中心心金金属属离离子子的的d d轨轨道道中中的的电电子子产产生生较较大大的的影影响响作作用用,但但实实际际上上是是OHOH的的场场强强度度反反而而低低,显显然这就很难纯
10、粹用静电效应进行解释。这说明了然这就很难纯粹用静电效应进行解释。这说明了 d d 轨轨道道的的分分裂裂并并非非纯纯粹粹的的静静电电效效应应,其其中中的的共价因素也不可忽略共价因素也不可忽略。综综上上,在在确确定定的的配配位位场场中中,值值取取决决于于中中心心原原子子和和配配位位体体两两 个个 方方 面面。1969年年Jorgensen将将分分裂裂能能拆拆分分为为只只决决定定于于配配体体的的f因因子子(f叫叫配配体体的的特特性性参参数数),和和只只决决定定于于金金属属的的g因因子子(g叫叫金金属属离离子子的的特特性性参参数数),并并表表示为示为 of g 表表5列列出出了了某某些些配配体体的的f
11、值值和和某某些些金金属属离离子子的的g值值,如如果果缺缺乏乏实实验验数数据据时时,可可由由此此粗粗略略地估计地估计o。表表5三三 电子成对能和配合物高低自旋的预言电子成对能和配合物高低自旋的预言 所谓所谓成对能成对能是电子在配对时为了克服静电场的排斥作用是电子在配对时为了克服静电场的排斥作用所需的能量所需的能量,通俗地讲就是使自旋成对的两个电子占据同一通俗地讲就是使自旋成对的两个电子占据同一轨道所必须付出的能量轨道所必须付出的能量,以以P表示。表示。电电子子成成对对能能的的大大小小可可用用描描述述电电子子相相互互作作用用的的Racah 电电子子排斥参数排斥参数B和和C来表示。通常,来表示。通常
12、,C4B。对气态的自由金属离子对气态的自由金属离子,已知已知 P(d4)6B5C P(d5)7.5B5C P(d6)2.5B4C P(d7)4B4C即即 P(d5)P(d4)P(d7)P(d6)说明电子成对能与说明电子成对能与d电子数目有关。电子数目有关。配配离离子子中中的的中中心心金金属属离离子子由由于于受受配配位位体体的的影影响响,同同自自由由金金属属离离子子相相比比,电电子子云云扩扩展展了了(电电子子云云扩扩展展是是指指其其运运动动的的范范围围增增大大),电电子子间间的的相相互互作作用用力力减减小小。所所以以,配配离离子子中中的的中中心心金金属属离离子子的的成成对对能能比比气气态态自自由
13、由金金属属离离子子的的成成对对能能减减小小(减减小小约约1520%)。对对于于一一个个处处于于某某特特定定配配位位场场中中的的金金属属离离子子,其其电电子子排排布布究究竟竟采采用用高高自自旋旋,还还是是低低自自旋旋的的状状态态,可可以以根根据据成成对对能和分裂能的相对大小来进行判断:能和分裂能的相对大小来进行判断:当当P时时,因因电电子子成成对对需需要要的的能能量量高高,电电子子将将尽尽量量以单电子排布分占不同的轨道以单电子排布分占不同的轨道,取取高自旋状态高自旋状态;当当P时时,电电子子成成对对耗耗能能较较少少,此此时时将将取取低低自自旋旋状态状态。由由于于P(d5)P(d4)P(d7)P(
14、d6),故故在在八八面面体体场场中中d6离离子子常常为为低低自自旋旋的的但但Fe(H2O)62和和CoF63例例外外,而而d5离子常为高自旋的离子常为高自旋的(CN的配合物例外的配合物例外)。根根据据P和和的的相相对对大大小小可可以以对对配配合合物物的的高高、低低自自旋旋进行预言进行预言:在在弱弱场场时时,由由于于值值较较小小,配配合合物物将将取取高高自自旋旋构构型型,相反相反,在强场时在强场时,由于由于值较大值较大,配合物将取低自旋构型。配合物将取低自旋构型。对对于于四四面面体体配配合合物物,由由于于t(4/9)0,这这样样小小的的t值值,通通常常都都不不能能超超过过成成对对能能值值,所所以
15、以四四面面体体配配合合物物通通常都是高自旋的。常都是高自旋的。第第二二、三三过过渡渡系系金金属属因因值值较较大大,故故几几乎乎都都是是低低自旋的。自旋的。d5:d7:d6:d4:d1:d2:d3:d8:d9:d10:高自旋排布高自旋排布低自旋排布低自旋排布 在在配配体体静静电电场场的的作作用用下下,中中心心金金属属离离子子的的d轨轨道道能能级级发发生生分分裂裂,其其上上的的电电子子一一部部分分进进入入分分裂裂后后的的低低能能级级轨轨道道,一一部部分分进进入入高高能能级级轨轨道道。进进入入低低能能级级轨轨道道使使体体系系能能量量下下降降,进进入入高高能能级级轨轨道道使使体体系系能能量量上上升升。
16、根根据据能能量量最最低低原原理理,体体系系中中的的电电子子优优先先进进入入低低能能级级轨轨道道。此此时时,如如果果下下降降的的能能量量多多于于上上升升的的能能量量,则则体体系系的的总总能能量量下下降降。这这样样获得的能量称为获得的能量称为晶体场稳定化能晶体场稳定化能。这这种种因因d轨轨道道分分裂裂和和电电子子填填入入低低能能级级轨轨道道给给配配合合物物带带来的额外稳定化作用将产生一种附加的成键作用效应。来的额外稳定化作用将产生一种附加的成键作用效应。四四 晶体场稳定化能和配合物的热力学性质晶体场稳定化能和配合物的热力学性质1 晶体场稳定化能晶体场稳定化能(CFSE)晶体场稳定化能的大小与下列因
17、素有关:晶体场稳定化能的大小与下列因素有关:配合物的几何构型;配合物的几何构型;中心原子的中心原子的d电子的数目;电子的数目;配体场的强弱;配体场的强弱;电子成对能。电子成对能。如如,Fe3(d5)在八面体场中可能有两种电子排布在八面体场中可能有两种电子排布 t2g3eg2,相对于未分裂的相对于未分裂的d轨道的能量值为轨道的能量值为 CFSE3(4Dq)26Dq0 t2g5eg0,CFSE5(4Dq)2P20Dq2P表表6 表表6列出几种配位场下的晶体场稳定化能值列出几种配位场下的晶体场稳定化能值,为了简化为了简化,忽忽略了成对能。略了成对能。在在弱弱场场中中,相相差差5个个 d 电电子子的的
18、各各对对组组态态的的稳稳定定化化能能相相等等,如如d1与与d6、d3与与d8,这这是是因因为为,在在弱弱场场中中无无论论何何种种几几何何构构型型的的场场,多多出出的的5个个电电子子,根根据据重重心心守守恒原理,对稳定化能都没有贡献。恒原理,对稳定化能都没有贡献。从表从表6可以发现以下几点规律:可以发现以下几点规律:在弱场中在弱场中,d0、d5、d10构型的离子的构型的离子的CFSE均为均为0。除除d0、d5、d10外,无论是弱场还是强场,外,无论是弱场还是强场,CFSE的次序都是正方形八面体四面体。的次序都是正方形八面体四面体。在弱场中,正方形与八面体稳定化能的差值以在弱场中,正方形与八面体稳
19、定化能的差值以d4、d9为最大,而在强场中则以为最大,而在强场中则以d8为最大。为最大。2 CFSE对配合物性质的影响对配合物性质的影响 晶晶体体场场理理论论的的核核心心是是配配位位体体的的静静电电场场与与中中心心离离子子的的作作用用所所引引起起的的d轨轨道道的的分分裂裂和和d电电子子进进入入低低能能级级轨轨道道带带来来的的稳稳定化能使体系能量下降,从而产生一种附加成键作用效应。定化能使体系能量下降,从而产生一种附加成键作用效应。既既然然CFSE引引起起附附加加成成键键效效应应,那那么么这这种种附附加加成成键键效效应应及其大小必然会在配合物的热力学性质上表现出来。及其大小必然会在配合物的热力学
20、性质上表现出来。由由表表6.7和和右右图图可可以以发发现现,在在正正八八面面体体弱弱场场高高自自旋旋(HS)中中,CFSE的的曲曲线线呈呈现现“W”形形或或“反反双双峰峰”形形状状,三三个个极极大大值值位位于于d0、d5、d10处处,两两个个极极小小值值出出现现在在d3和和d8处处,而而在在强强场场低低自自旋旋(LS)中中,曲曲线线呈呈“V”形形,极极大值为大值为d0、d10,极小值,极小值d6。例如,以过渡金属离子的水合焓为例:例如,以过渡金属离子的水合焓为例:显显然然水水合合焓焓跟跟中中心心离离子子的的d轨轨道道处处于于配配体体H2O静静电电场场有有关关。假假定定这这种种静静电电场场由由球
21、球形形对对称称的的静静电电场场和和正正八八面面体体对对称称的的静静电电场场两部分所组成。基于此,可以写出玻恩哈伯循环:两部分所组成。基于此,可以写出玻恩哈伯循环:Mm(g)H2OM(H2O)6m(ag)hydHmMm,(t2gNegnN)其中其中:hydHmM(H2O)6m(dn,球形球形)是生成球形对称的是生成球形对称的M(H2O)6m (dn,球形球形)的水合能的水合能;CFSE是正八面体静电场使是正八面体静电场使d轨道分裂、轨道分裂、d 电子重新排布时放出的能量。电子重新排布时放出的能量。Mm(dn,g)6 H2O M(H2O)6m(t2gNegnN)M(H2O)6m(dn,球形球形)得
22、得 hydHm(Mm,g)hydHmM(H2O)6m(dn,球形球形)CFSEhydHmM(H2O)6m(dn,球形球形)hydHm(Mm,g)CFSE 对对于于过过渡渡金金属属离离子子,随随原原子子序序数数的的增增加加,有有效效核核电电荷荷增增大大,离离子子半半径径减减小小,键键能能和和球球形形对对称称静静电电场场水水合合能能应应该该平平稳稳地地增增加加(负负值值增增大大),而而CFSE部部分分应应该该有有W形形的的变化规律,这两部分合起来就得到左图的形状。变化规律,这两部分合起来就得到左图的形状。水水合合焓焓的的变变化化规规律律正正是是CFSF随随d电电子子数数的的变变化化规规律律的体现。
23、的体现。需需注注意意的的是是:CFSE只只占占金金属属与与配配体体总总键键能能的的一一小小部部分分(大大约约为为510%),只只有有当当别别的的因因素素大大致致不不变变时时,它它的关键作用才能表现出来。的关键作用才能表现出来。类类似似地地,可可以以讨讨论论晶晶体体场场分分裂裂在在晶晶格格能能、离离解解能能上上的影响。的影响。这这个个序序列列叫叫作作IrvingWilliams序序列列,这这个个顺顺序序大大致致与与弱弱场场CFSE的的变变化化顺顺序序一一致致,类类似似于于前前述述反反双双峰峰曲曲线线的的后后半半段段,只只是是谷谷值值不不在在d8而而是是d9,其其原因是姜泰勒效应所引起的。原因是姜
24、泰勒效应所引起的。3 配合物生成常数的配合物生成常数的IrvingWilliams序列序列 实实验验发发现现,在在由由Mn到到Zn的的二二价价金金属属离离子子与与含含 N 配配位位原原子子的的配配体体生生成成的的配配合合物物的的稳稳定定次次序序,亦亦即即它们的平衡常数,可观察到下列顺序它们的平衡常数,可观察到下列顺序:Mn2Fe2Co2Ni2Cu2Zn2 d5 d6 d7 d8 d9 d10五五 d轨道分裂的结构效应轨道分裂的结构效应1 过渡金属的离子半径过渡金属的离子半径 从从下下图图八八面面体体配配合合物物中中第第一一过过渡渡系系离离子子的的半半径径随随原原子子序序数数的的变变化化看看来来
25、,过过渡渡金金属属并并不不像像镧镧系系元元素素一一样样,其其离离子子半半径径并并不不随随原原子子序序数数的的增增加加单单调调的的减减少少。而而是是呈呈斜斜W形形(在弱场中在弱场中)或或V形形(在强场中在强场中)的变化规律。的变化规律。HSHSLSLSd6M Mr/pm120100 80 60 以以二二价价离离子子弱弱场场而而言言,按按晶晶体体场场理理论论,Ca2、Mn2、Zn2离离子子有有球球形形对对称称的的电电子子云云分分布布。三三个个离离子子的的有有效效核核电电荷荷依依次次增增大大,故故离离子子半半径径逐逐渐渐减减小小,它它们们位位于于逐逐渐渐下下降降的的平平滑滑曲曲线线上上。其其它它离离
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四章 晶体场、分子轨道理论 第四 晶体 分子 轨道 理论
限制150内