《PLC学习课件7讲补充基本指实例经验设计法.ppt》由会员分享,可在线阅读,更多相关《PLC学习课件7讲补充基本指实例经验设计法.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、梯形图经验设计法教学目的 1、掌握常见的可编程序控制器典型环节电路的程序编写 2、要求学生掌握基本程序用经验设计法来编程 梯形图经验设计法 经验设计方法也叫试凑法,经验设计方法需要设计者掌握大量的典型电路,在掌握这些典型电路的基础上,充分理解实际的控制问题,将实际控制问题分解成典型控制电路,然后用典型电路或修改的典型电路进行拼凑梯形图。梯形图经验设计法的步骤分解梯形图程序输入信号逻辑组合 使用辅助元件和辅助触点 使用定时器和计数器 使用功能指令 画互锁条件 画保护条件 常用基本环节梯形图程序 1.起动、保持和停止电路 2.正反转控制电路 3.多继电器线圈控制电路 4.多地控制电路 5.互锁控制
2、电路6.顺序起动控制电路7.集中与分散控制电路8.自动与手动控制电路 9.闪烁电路 10.延合延分电路 11.定时范围扩展电路 启动、保持和停止电路 实现Y10的启动、保持和停止的四种梯形图如图所示。这些梯形图均能实现启动、保持和停止的功能。X0为启动信号,X1为停止信号。图a、c是利用Y10 常开触点实现自锁保持,而图b、d是利用SET、RST指令实现自锁保持。起动、保持和停止电路常闭触点输入信号的处理 如果输入信号只能由常开触点提供,梯形图中的触点类型与继电器电路的触点类型完全一致。如果接入PLC的是输入信号的常闭触点,这时在梯形图中所用的X1的触点的类型与PLC外接SB2的常开触点时刚好
3、相反,与继电器电路图中的习惯也是相反的。建议尽可能采用常开触点作为PLC的输入信号。正反转控制电路正反转控制电路控制回路主回路PLCPLC控制电动机正反转外部接线图控制电动机正反转外部接线图 s s2 22 20 0V VK KM M1 1K KM M2 2F FR RX0X0Y Y0 0P PL LC CX1X1Y Y1 1X2X2X3X3C CO OM MC CO OM MK KM M1 1K KM M2 2SB1SB2SB3PLC的的 I/O点的确定与分配点的确定与分配 电机正反转控制电机正反转控制PLC的的I/O点分配表点分配表 PLCPLC点名称点名称连接的外部设备连接的外部设备功能
4、说明功能说明X0X0SB1SB1停止命令停止命令X1X1SB2SB2电机正转命令电机正转命令X2X2SB3SB3电机反转命令电机反转命令X3X3FRFR常开常开电动机过载保护电动机过载保护Y0Y0KM1KM1控制电机正转控制电机正转Y1Y1KM2KM2控制电机反转控制电机反转程序编制X 1Y 0X 2Y 1Y1Y1Y0X2X1X0X0X3X3Y0多继电器线圈控制电路 下图是可以自锁的同时控制4个继电器线圈的电路图。其中X0是起动按钮,X1是停止按钮。多地控制电路 下图是两个地方控制一个继电器线圈的程序。其中X0和X1是一个地方的起动和停止控制按钮,X2和X3是另一个地方的起动和停止控制按钮。互
5、锁控制电路 下图是3个输出线圈的互锁电路。其中X0、X1和X2是起动按钮,X3是停止按钮。由于Y0、Y1、Y2每次只能有一个接通,所以将Y0、Y1、Y2的常闭触点分别串联到其它两个线圈的控制电路中。顺序起动控制电路 如图所示。Y0的常开触点串在Y1的控制回路中,Y1的接通是以Y0的接通为条件。这样,只有Y0接通才允许Y1接通。Y0关断后Y1也被关断停止,而且Y0接通条件下,Y1可以自行接通和停止。X0、X2为起动按钮,X1、X3为停止按钮。集中与分散控制电路 在多台单机组成的自动线上,有在总操作台上的集中控制和在单机操作台上分散控制的联锁。集中与分散控制的梯形图如图所示。X2为选择开关,以其触
6、点为集中控制与分散控制的联锁触点。当X2为ON时,为单机分散起动控制;当X2为OFF时,为集中总起动控制。在两种情况下,单机和总操作台都可以发出停止命令。自动与手动控制电路 在自动与半自动工作设备中,有自动控制与手动控制的联锁,如图所示。输入信号X1是选择开关,选其触点为联锁型号。当X1为ON时,执行主控指令,系统运行自动控制程序,自动控制有效,同时系统执行功能指令CJ P63,直接跳过手动控制程序,手动调整控制无效。当X1为OFF时,主控指令不执行,自动控制无效,跳转指令也不执行,手动控制有效。闪烁电路 当拨动开关将X0接通,启动脉冲发生器。延时2s后Y0接通,再延时1s后Y0断开。这一过程
7、周期性地重复。Y0输出一系列脉冲信号,其周期为3s,脉宽为1s。延合延分电路 如图所示用X0控制Y0,当X0的常开触点接通后,T0开始定时,10s后T0的常开触点接通,使Y0变为ON。X0为ON时其常闭触点断开,使T1复位,X0变为OFF后T1开始定时,5s后T1的常闭触点断开,使Y0变为OFF,T1也被复位。Y0用起动、保持、停止电路来控制。定时范围扩展电路 FX2N系列PLC定时器的最长定时时间为3276.7s,如果需要更长的定时时间,可以采用以下方法以获得较长延时时间。多个定时器组合电路定时器和计数器组合多个定时器组合电路 如图所示。当X0接通,T0线圈得电并开始延时,延时到T0常开触点
8、闭合,又使T1线圈得电,并开始延时,当定时器T1延时到,其常开触点闭合,再使T2线圈得电,并开始延时,当定时器T2延时到,其常开触点闭合,才使Y0接通。因此,从X0为ON开始到Y0接通共延时9000s。定时器和计数器组合 当X1为ON时,T1开始定时,0.6s后T1定时时间到,其常闭触点断开,使它自己复位,复位后T1的当前值变为0,同时它的常闭触点接通,使它自己的线圈重新通电,又开始定时。T1将这样周而复始地工作,直至X1变为OFF。从分析中可看出,1最上面一行电路是一个脉冲信号发生器,脉冲周期等于T1的设定值。产生的脉冲列送给C0计数,计满3个数后,C0的当前值等于设定值,它的常开触点闭合,Y0开始输出。定时器和计数器组合定时演示定时器和计数器组合定时演示