第2章逻辑代数及其化简精选PPT.ppt

上传人:石*** 文档编号:88327034 上传时间:2023-04-25 格式:PPT 页数:100 大小:5.26MB
返回 下载 相关 举报
第2章逻辑代数及其化简精选PPT.ppt_第1页
第1页 / 共100页
第2章逻辑代数及其化简精选PPT.ppt_第2页
第2页 / 共100页
点击查看更多>>
资源描述

《第2章逻辑代数及其化简精选PPT.ppt》由会员分享,可在线阅读,更多相关《第2章逻辑代数及其化简精选PPT.ppt(100页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第第2章章逻辑代数及其化代数及其化简第1页,此课件共100页哦目目录录2.1计数制与编码计数制与编码2.2逻辑代数基础逻辑代数基础2.3逻辑函数常用的描述方法逻辑函数常用的描述方法2.4逻辑函数的化简逻辑函数的化简2.5具有无关项逻辑函数的化简具有无关项逻辑函数的化简2.6用用Multisim2001进行逻辑函数的化简与变换进行逻辑函数的化简与变换 2第2页,此课件共100页哦2.1计数制与编码计数制与编码任何数通常都可以用两种不同的方法来表示:一种是按其任何数通常都可以用两种不同的方法来表示:一种是按其“值值”表示,另一种是按表示,另一种是按“形形”表示。表示。按按“值值”表示,即选定某种进

2、位的计数制来表示某个数的表示,即选定某种进位的计数制来表示某个数的值,这就是所谓的进位计数制,简称值,这就是所谓的进位计数制,简称数制数制(NumberSystem)。)。3第3页,此课件共100页哦 2.1.1常用计数制及其转换(自学)常用计数制及其转换(自学)1.1.十进制十进制143.75=1*10143.75=1*102 2+4*10+4*101 1+3*10+3*100 0+7*10+7*10-1-1+5*10+5*10-2-2D=ki10i2.2.二进制二进制(101.11)(101.11)2 2=1*2=1*22 2+0*2+0*21 1+1*2+1*20 0+1*2+1*2-1

3、-1+1*2+1*2-2-2=(5.75)=(5.75)1010D=ki2i 101.11 101.11B=5.75DB=5.75D3.3.十六进制十六进制(2(2A.7F)A.7F)1616=2*16=2*161 1+10*16+10*160 0+7*16+7*16-1-1+15*16+15*16-2-2=(42.5)=(42.5)1010D=ki16i 2 2A.7FH=42.5DA.7FH=42.5D4第4页,此课件共100页哦 2.1.1常用计数制及其转换(自学)常用计数制及其转换(自学)1.1.二二十进制十进制(101.11)(101.11)2 2=1*2=1*22 2+0*2+0*

4、21 1+1*2+1*20 0+1*2+1*2-1-1+1*2+1*2-2-2=(5.75)=(5.75)10102.2.十十二进制二进制分整数和小数两部分:分整数和小数两部分:整数部分整数部分除以除以2 2取取余余,小数部分,小数部分乘以乘以2 2取取整整。3.3.二二十六进制十六进制(101,1110.1011,0010)(101,1110.1011,0010)2 2 =(5 =(5 E.B 2)E.B 2)16164.4.十六十六二进制二进制(8 (8 F A.C 6)F A.C 6)1616 =(1000 1111 1010.1100 0110)=(1000 1111 1010.110

5、0 0110)2 25第5页,此课件共100页哦按按“形形”表示,就是用代码来表示某些数的表示,就是用代码来表示某些数的“值值”。按按“形形”表表示示一一个个数数时时,先先要要确确定定编编码码规规则则,然然后后按按此此编编码码规规则则编编出出代代码码,并并给给代代码码赋赋以以一一定定的的含含义义,这这就是所谓的就是所谓的编码编码。6第6页,此课件共100页哦计计算算机机等等数数字字系系统统所所处处理理的的信信息息多多为为数数值值、文文字字、符符号号、图图形形、声声音音和和图图像像等等,它它们们都都可可以以用用多多位位二二进进制制数来表示,这种多位二进制数叫做代码。数来表示,这种多位二进制数叫做

6、代码。如如果果用用一一组组代代码码并并给给每每个个代代码码赋赋以以一一定定的的含含义义则则称称编编码码(Encode)。)。2.1.2编码编码7第7页,此课件共100页哦在在数数字字电电路路中中,常常用用二二-十十进进制制码码,也也叫叫做做BCD(Binary-CodedDecimal)码)码。所所谓谓二二-十十进进制制码码,就就是是用用4位位二二进进制制数数组组成成的的代代码码来来表表示示1位十进制数。位十进制数。4位位二二进进制制数数具具有有16种种组组合合,二二-十十进进制制数数的的10个个数数字字符符号号只只需需选选用用其其中中的的10种种组组合合来来表表示示常常用用的的几几种种二二-

7、十十进制编码如表进制编码如表2-1所示。所示。8第8页,此课件共100页哦表表2-1 常用的几种二常用的几种二-十进制编码十进制编码有权码有权码无权码无权码9第9页,此课件共100页哦英国数学家乔治英国数学家乔治布尔(布尔(GeorgeBoole)于)于1847年在他年在他的著作中首先对的著作中首先对逻辑代数逻辑代数进行了系统的论述,故逻辑进行了系统的论述,故逻辑代数始称为代数始称为布尔代数布尔代数,因为逻辑代数用于研究二值变,因为逻辑代数用于研究二值变量的运算规律,所以也称为量的运算规律,所以也称为二值代数二值代数。2.2逻辑代数基础逻辑代数基础 10第10页,此课件共100页哦2.2.1逻

8、辑代数的基本运算和复合运算逻辑代数的基本运算和复合运算 逻辑代数的基本运算包括逻辑代数的基本运算包括与、或、非与、或、非三种运算。三种运算。下面用三个指示灯的控制电路来分别说明三种基本下面用三个指示灯的控制电路来分别说明三种基本逻辑运算的物理意义。逻辑运算的物理意义。设设开关开关A、B为逻辑变量,约定开关闭合为逻辑为逻辑变量,约定开关闭合为逻辑1、开关断开为逻辑开关断开为逻辑0;设;设灯灯为逻辑函数为逻辑函数F,约定灯亮为逻,约定灯亮为逻辑辑1,灯灭为逻辑,灯灭为逻辑0。11第11页,此课件共100页哦逻逻辑辑与与(也也叫叫逻逻辑辑乘乘)定定义义如如下下:“一一个个事事件件要要发发生生需需要要

9、多多个个条条件件,只只有有当当所所有有的的条条件件都都具具备备之之后后,此此事事件件才才发生发生”。EABF?怎么表示与运算呢怎么表示与运算呢1.与运算与运算 12第12页,此课件共100页哦1)真真值值表表:将将逻逻辑辑变变量量所所有有可可能能取取值值的的组组合合与与其其一一一一对对应应的的逻逻辑辑函函数数值值之之间间的的关关系系以以表表格格的的形形式式表表示示出来,叫做出来,叫做逻辑函数的真值表逻辑函数的真值表。与逻辑运算真值表ABF0011010100011.与运算与运算输入输出13第13页,此课件共100页哦2)逻逻辑辑表表达达式式:表表示示逻逻辑辑与与运运算算的的逻逻辑辑函函数数表表

10、达达式式为为FAB,式中,式中“”为与运算符号,有时也可以省略。为与运算符号,有时也可以省略。与运算的规则为:与运算的规则为:000,010,100,11=1。与运算可以推广到多个逻辑变量,即与运算可以推广到多个逻辑变量,即FABC。1.与运算与运算14第14页,此课件共100页哦3)逻逻辑辑符符号号(电电路路图图):在在数数字字电电路路中中,实实现现逻逻辑辑与与运运算算的的单单元元电电路路叫叫与与门门,与与门门的的逻逻辑辑符符号号如如图图所示。所示。本教材采用的符号1.与运算与运算15第15页,此课件共100页哦2.或运算或运算在在决决定定一一事事件件发发生生的的多多个个条条件件中中,只只要

11、要有有一一个个条条件满足,此事件就会发生。件满足,此事件就会发生。A AE EB BF F 逻辑或运算的真值表逻辑或运算的真值表16第16页,此课件共100页哦或运算或运算逻辑函数表达式逻辑函数表达式为为FAB,式中式中“”为为或运算符号。或运算符号。或运算的规则为:或运算的规则为:0+00,0+11,1+01,1+1=1。逻辑或运算也可推广到多个逻辑变量,即逻辑或运算也可推广到多个逻辑变量,即 F=A+B+C+。2.或运算或运算17第17页,此课件共100页哦2.或运算或运算实现逻辑或运算的单元电路叫实现逻辑或运算的单元电路叫或门或门,或门的逻辑,或门的逻辑符号如图所示。符号如图所示。18第

12、18页,此课件共100页哦3.非运算非运算当条件不具备时,事件才会发生。当条件不具备时,事件才会发生。E EY YA AR R逻辑非运算的真值表逻辑非运算的真值表19第19页,此课件共100页哦3.非运算非运算非非运运算算的的逻逻辑辑表表达达式式为为,式式中中A上上的的“”为为非运算符号,非运算符号,EDA中表示为中表示为。非运算的规则为:非运算的规则为:实实现现非非运运算算的的单单元元电电路路叫叫非非门门(或或反反相相器器),非非门门的的逻辑符号如图所示。逻辑符号如图所示。20第20页,此课件共100页哦4.几种常用的逻辑运算几种常用的逻辑运算由与、或、非三种基本逻辑运算可以组合成多种常用由

13、与、或、非三种基本逻辑运算可以组合成多种常用的复合逻辑运算。的复合逻辑运算。1)与非运算)与非运算ABF00110101111021第21页,此课件共100页哦2)或非运算)或非运算ABF0011010110004.几种常用的逻辑运算几种常用的逻辑运算22第22页,此课件共100页哦3)与或非运算)与或非运算4.几种常用的逻辑运算几种常用的逻辑运算23第23页,此课件共100页哦4)异或逻辑运算)异或逻辑运算对对于于两两变变量量的的异异或或运运算算,当当输输入入相相异异时时输输出出为为1,输入相同时输出为,输入相同时输出为0。24第24页,此课件共100页哦5)同或逻辑运算)同或逻辑运算对对于

14、于两两变变量量的的同同或或运运算算,当当输输入入相相同同时时输输出出为为1,输输入相异时输出为入相异时输出为0。25第25页,此课件共100页哦2.2.2逻辑代数的基本公式和常用公式逻辑代数的基本公式和常用公式1.基本公式基本公式0101定律:定律:重叠律:重叠律:26第26页,此课件共100页哦2.2.2逻辑代数的基本公式和常用公式逻辑代数的基本公式和常用公式27第27页,此课件共100页哦同理可证明:同理可证明:2.2.2逻辑代数的基本公式和常用公式逻辑代数的基本公式和常用公式28第28页,此课件共100页哦2.2.2逻辑代数的基本公式和常用公式逻辑代数的基本公式和常用公式证明:1.穷举法

15、 2.公式法29第29页,此课件共100页哦2.常用公式常用公式30第30页,此课件共100页哦2.常用公式常用公式31第31页,此课件共100页哦2.常用公式常用公式32第32页,此课件共100页哦*异或公式(补充)异或公式(补充)33第33页,此课件共100页哦2.2.3逻辑代数的基本规则逻辑代数的基本规则1.代入规则代入规则对对任任意意逻逻辑辑等等式式,如如果果将将式式中中的的某某一一变变量量用用其其他他变变量或逻辑函数替换,则此等式仍然成立。量或逻辑函数替换,则此等式仍然成立。例例如如,等等式式,若若函函数数FBC去去置置换换等等式式中中地地变变量量B,则则等等式式左左边边,而而等等式

16、式右右边边,显显然然,等等式仍然成立。式仍然成立。34第34页,此课件共100页哦2.反演规则反演规则对于一个逻辑函数式对于一个逻辑函数式F,若将其中所有的若将其中所有的则得到的结果就是则得到的结果就是F F的的反函数反函数。35第35页,此课件共100页哦注意:注意:优先顺序不能变,优先顺序不能变,不是单个变量上的反号不能变不是单个变量上的反号不能变。36第36页,此课件共100页哦3.对偶规则对偶规则 F F F F F F 对于一个逻辑函数式对于一个逻辑函数式F,若将其中的若将其中的则得到的结果就是则得到的结果就是F F的对偶式。的对偶式。若两逻辑式相等若两逻辑式相等,则它们的对偶式也相

17、等。则它们的对偶式也相等。37第37页,此课件共100页哦2.3.1逻辑函数常用的描述方法逻辑函数常用的描述方法2.3逻辑函数常用的描述方法及相互间逻辑函数常用的描述方法及相互间的转换的转换逻辑表达式逻辑表达式真值表真值表逻辑电路图逻辑电路图卡诺图卡诺图逻辑函数常用的描述方法逻辑函数常用的描述方法38第38页,此课件共100页哦由由逻逻辑辑变变量量和和逻逻辑辑运运算算符符号号组组成成,用用于于表表示示变变量量之之间间逻逻辑关系的式子,称为逻辑表达式。辑关系的式子,称为逻辑表达式。1.逻辑表达式逻辑表达式 39第39页,此课件共100页哦与或表达式:与或表达式:标准与或表达式:标准与或表达式:或

18、与表达式:或与表达式:标准或与表达式标准或与表达式:与非与非表达式与非与非表达式:或非或非表达式或非或非表达式:与或非表达式:与或非表达式:40第40页,此课件共100页哦用用来来反反映映变变量量所所有有取取值值组组合合及及对对应应函函数数值值的的表表格格,称称为为真值表。真值表。例例如如,对对于于三三变变量量的的判判断断奇奇数数的的电电路路中中,当当A、B、C三三个变量中有奇数个个变量中有奇数个1时,输出时,输出F为为1;否则,输出;否则,输出F为为0。2.真值表真值表41第41页,此课件共100页哦表表2-12三变量判断奇数电路的真值表三变量判断奇数电路的真值表ABC F 00000101

19、0011100101110111 0110100142第42页,此课件共100页哦由由逻辑门电路符号逻辑门电路符号构成的,用来表示逻辑变量之间关系构成的,用来表示逻辑变量之间关系的图形称为逻辑电路图,简称逻辑图。的图形称为逻辑电路图,简称逻辑图。3.逻辑图逻辑图43第43页,此课件共100页哦4.卡诺图卡诺图将逻辑变量分成两组,分别在将逻辑变量分成两组,分别在横竖两个方向横竖两个方向排列出排列出各组变量的各组变量的所有取值组合所有取值组合,构成一个有个方格的图形,构成一个有个方格的图形,其中,每一个方格对应变量的一个取值组合,这种图其中,每一个方格对应变量的一个取值组合,这种图形叫做卡诺图。形

20、叫做卡诺图。44第44页,此课件共100页哦2.3.2不同描述方法之间的转换不同描述方法之间的转换1.表达式表达式真值表真值表由表达式列函数的真值表时,一般首先按自然二进制由表达式列函数的真值表时,一般首先按自然二进制码的顺序列出函数所含逻辑变量的所有不同取值组合,码的顺序列出函数所含逻辑变量的所有不同取值组合,再确定其对应的函数值。再确定其对应的函数值。45第45页,此课件共100页哦例例2-1列出逻辑函数列出逻辑函数的真值表的真值表 解解:逐逐个个将将变变量量A、B、C的的各各个个取取值值组组合合代代入入逻逻辑函数中,求出相应的函数值。辑函数中,求出相应的函数值。ABC取取000时时,F为

21、为0;ABC取取001时时,F为为1;ABC取取110时,时,F为为1;ABC取取111时,时,F为为0。按按自自然然二二进进制制码码的的顺顺序序列列出出变变量量A、B、C的的所所有有不不同取值组合,再根据以上的分析结果,同取值组合,再根据以上的分析结果,46第46页,此课件共100页哦表表2-13逻辑函数逻辑函数的真值表的真值表ABCF0000010100111001011101110111111047第47页,此课件共100页哦FA B C0 0 0 00 1 0 01 0 0 01 1 0 00 0 1 00 1 1 11 0 1 11 1 1 1 将所有已写出的组合进行将所有已写出的组

22、合进行“或或”真值表真值表2.真值表真值表表达式表达式 找出输出找出输出“1”的组合的组合 用用“与与”写出使输出为写出使输出为1的组合。的组合。48第48页,此课件共100页哦3.表达式表达式逻辑图逻辑图49第49页,此课件共100页哦2.3.3逻辑函数的建立及其描述方法逻辑函数的建立及其描述方法为为了了解解决决某某个个实实际际问问题题,必必须须研研究究其其因因变变量量及及其其相相互互之间的逻辑关系,从而得出相应的逻辑函数。之间的逻辑关系,从而得出相应的逻辑函数。一一般般来来说说,首首先先应应根根据据提提出出的的实实际际逻逻辑辑命命题题,确确定定输输入入逻辑变量、输出逻辑变量。逻辑变量、输出

23、逻辑变量。研究它们之间的因果关系,列出其真值表。研究它们之间的因果关系,列出其真值表。再根据真值表写逻辑函数表达式。再根据真值表写逻辑函数表达式。根据表达式画出电路图。根据表达式画出电路图。50第50页,此课件共100页哦例例2-13:有有一一水水塔塔,用用一一大大一一小小的的两两台台电电动动机机MS和和ML分分别别驱驱动动两两个个水水泵泵向向水水塔塔注注水水,当当水水塔塔的的水水位位降降到到C点点时时,小小电电动动机机MS单单独独驱驱动动小小水水泵泵注注水水,当当水水位位降降到到B点点时时,大大电电动动机机ML单单独独驱驱动动大大水水泵泵注注水水,当当水水位位降降到到A点点时时由由两两台台电

24、电动动机机同同时时驱驱动动水水泵泵注注水水。试试设设计计一一个个控控制制电电动动机机工作的逻辑电路。工作的逻辑电路。51第51页,此课件共100页哦解解1)设设水水位位C、B、A为为输输入入变变量量,当当水水位位降降到到C、B、A的的某某点点时时,取取值值为为逻逻辑辑“1”,否否则则取取值值为为逻逻辑辑“0”;电电动动机机MS和和ML为为输输出出变变量量,工工作作时时取取值值为为“1”,不工作时为,不工作时为“0”。2)分析逻辑变量之间的)分析逻辑变量之间的因因果关系,列出此逻辑果关系,列出此逻辑函数函数的真值表。的真值表。52第52页,此课件共100页哦3)根据真值表可写出逻辑函数表达式。)

25、根据真值表可写出逻辑函数表达式。53第53页,此课件共100页哦4)根据逻辑函数表达式画出逻辑电路图。)根据逻辑函数表达式画出逻辑电路图。54第54页,此课件共100页哦2.4逻辑函数的化简逻辑函数的化简2.4.1逻辑函数的最简形式逻辑函数的最简形式 同一逻辑函数可以采用不同的逻辑电路图来实现,而这些同一逻辑函数可以采用不同的逻辑电路图来实现,而这些逻辑电路图所采用的器件的种类或数量可能会有所不同,逻辑电路图所采用的器件的种类或数量可能会有所不同,因此化简逻辑函数可以简化电路、节省器材、降低成本、因此化简逻辑函数可以简化电路、节省器材、降低成本、提高系统的可靠性。因此,化简逻辑函数对工程设计来

26、说提高系统的可靠性。因此,化简逻辑函数对工程设计来说具有重要意义具有重要意义。逻辑函数的最简表达式有很多种,常用的有逻辑函数的最简表达式有很多种,常用的有最简与或式最简与或式和最简或与式和最简或与式。55第55页,此课件共100页哦与或式与或式F1=AB+BC与或式的最简标准是:与或式的最简标准是:含的与项个数最少;含的与项个数最少;各与各与项中含的变量个数最少。项中含的变量个数最少。或与式或与式F2=(A+B)(B+C)或与式的最简标准是:或与式的最简标准是:含的或项个数最少;含的或项个数最少;各或项中含的变量个数最少。各或项中含的变量个数最少。常用的化简方法有常用的化简方法有公式法和卡诺图

27、法公式法和卡诺图法两种。两种。56第56页,此课件共100页哦公公式式化化简简法法就就是是运运用用逻逻辑辑代代数数的的基基本本公公式式和和常常用用公公式式,得到最简形式。得到最简形式。2.4.2逻辑函数的公式化简逻辑函数的公式化简 57第57页,此课件共100页哦利用结合律利用结合律,将两个与项合并为一个,将两个与项合并为一个,消去其中的一个变量。消去其中的一个变量。1.并项法并项法例如例如58第58页,此课件共100页哦2.吸收法吸收法 利用吸收律利用吸收律A+AB=A,吸收多余的与项。,吸收多余的与项。例如:例如:59第59页,此课件共100页哦3.消因子法消因子法 利用利用吸收律消去某些

28、与项中的变量。吸收律消去某些与项中的变量。例如例如:60第60页,此课件共100页哦利用吸收律利用吸收律,将某些与项消,将某些与项消去。去。例如:例如:4.消项法消项法 61第61页,此课件共100页哦5.配项法配项法 利利用用等等基基本本公公式式给给某某些些逻逻辑辑函函数数配配上上适适当当的的项项,进进而而可可消消去去原原函函数中的某些项或变量。数中的某些项或变量。例如例如62第62页,此课件共100页哦实实际际上上,在在化化简简一一个个较较复复杂杂的的逻逻辑辑函函数数时时,总总是是根根据据逻逻辑辑函数的不同构成,综合应用上述几种方法。函数的不同构成,综合应用上述几种方法。例例63第63页,

29、此课件共100页哦例题例题64第64页,此课件共100页哦不同形式表达式之间的变换不同形式表达式之间的变换:利利用用基基本本公公式式对对逻逻辑辑函函数数作作形形式式上上的的变变换换,以以便便选选用用适适合合的的器器件件来来实实现现其其逻逻辑辑功功能能。如如将将与与或或式式变变换换成成与与非非与与非非表达式,以便用与非门来实现。表达式,以便用与非门来实现。例如例如65第65页,此课件共100页哦将将或或与与式式变变换换成成或或非非或或非非表表达达式式,以以便便用用或或非非门门来来实现。实现。例如例如不同形式表达式之间的变换不同形式表达式之间的变换:66第66页,此课件共100页哦2.4.3逻辑函

30、数的卡诺图化简逻辑函数的卡诺图化简 用用公公式式法法简简化化逻逻辑辑函函数数时时,一一方方面面,不不仅仅要要熟熟记记逻逻辑辑代代数数的的基基本本公公式式,而而且且还还需需要要有有熟熟练练的的运运算算技技巧巧;另另一一方方面面,经经过过化化简简后后的的逻逻辑辑函函数数是是否否是是最最简简或或最最佳佳时时有有时时也也难难以以确确定定。与与之之相相比比,应应用用卡卡诺诺图图化化简简逻逻辑辑函函数数,则则简简捷捷直直观观、灵灵活方便、且容易确定是否已得到最简结果。活方便、且容易确定是否已得到最简结果。67第67页,此课件共100页哦(1)定义)定义标准与或表达式标准与或表达式是一种特殊的与或表达式,其

31、中的每个是一种特殊的与或表达式,其中的每个与项都包含了所有相关的逻辑变量,每个变量以原变与项都包含了所有相关的逻辑变量,每个变量以原变量或反变量出现一次且仅出现一次,这样的与项称为量或反变量出现一次且仅出现一次,这样的与项称为标准与项,又称标准与项,又称最小项最小项。如如 F=F(A,B)F=F(A,B),共有最小项,共有最小项4 4项:项:1.标准与或表达式标准与或表达式最小项最小项68第68页,此课件共100页哦m m0 0m m1 10000000010010 01 1最小项最小项二进制代码二进制代码十进制数十进制数m mi im m2 2m m3 3m m4 4m m5 5m m6 6

32、m m7 70100100110111001001011011101101111112 23 34 45 56 67 7(2 2)最小项编号最小项编号69第69页,此课件共100页哦(3)最小项的主要性质)最小项的主要性质每个最小项都与变量的惟一的一个取值组合相对应,每个最小项都与变量的惟一的一个取值组合相对应,只有该取值组合使这个最小项取值为只有该取值组合使这个最小项取值为1,其余任何组,其余任何组合均使该最小项为合均使该最小项为0。所有最小项相或,结果为所有最小项相或,结果为1。任意两个不同的最小项相与,结果为任意两个不同的最小项相与,结果为070第70页,此课件共100页哦例例2-4写出

33、函数写出函数的标准与或表达式。的标准与或表达式。71第71页,此课件共100页哦(4)标准或与表达式)标准或与表达式标准或与表达式标准或与表达式是一种特殊的或与表达式,其中的每个是一种特殊的或与表达式,其中的每个或项都包含了所有的逻辑变量,每个变量以原变量或反或项都包含了所有的逻辑变量,每个变量以原变量或反变量出现一次且仅出现一次。这样的或项称为标准或项,变量出现一次且仅出现一次。这样的或项称为标准或项,又称又称最大项最大项。例如:例如:A、B、C的最大项的最大项对应的变量取值组合对应的变量取值组合为为010,其大小为,其大小为2,因而,记为,因而,记为M2。如果一个或项缺少某变量,则或上该变

34、量和其反变量的逻如果一个或项缺少某变量,则或上该变量和其反变量的逻辑与,直至每一个或项都为最大项为止。辑与,直至每一个或项都为最大项为止。72第72页,此课件共100页哦将逻辑变量分成两组,分别在将逻辑变量分成两组,分别在横竖两个方向横竖两个方向排列出各组变排列出各组变量的所有取值组合,构成一个有量的所有取值组合,构成一个有2n个方格的图形,其中,个方格的图形,其中,每一个方格对应变量的一个取值组合每一个方格对应变量的一个取值组合,这种图形叫做卡诺,这种图形叫做卡诺图。图。1)每个小方格代表一个最小项,对于)每个小方格代表一个最小项,对于n变量来说,共有变量来说,共有2n个小方格。个小方格。2

35、)几何上相邻的最小项,逻辑上具有相邻性几何上相邻的最小项,逻辑上具有相邻性。2.卡诺图构成的原则卡诺图构成的原则73第73页,此课件共100页哦AB01 010132ABABABAB二变量卡诺图二变量卡诺图最小项编号ABC000111100101324 576ABCABC ABC ABCABC ABCABCABC三变量卡诺图三变量卡诺图2.卡诺图构成的原则卡诺图构成的原则74第74页,此课件共100页哦0132457612131514891110ABCD0001111000011110ABCD ABCD ABCD ABCDABCD ABCD ABCD ABCDABCD ABCDABCDABCD

36、ABCD ABCD ABCD ABCD四变量卡诺图四变量卡诺图重要特性:重要特性:几何相邻具有逻辑相邻几何相邻具有逻辑相邻注:上与下,左与右,对称,注:上与下,左与右,对称,注:上与下,左与右,对称,注:上与下,左与右,对称,相邻相邻相邻相邻75第75页,此课件共100页哦3.用卡诺图表示逻辑函数用卡诺图表示逻辑函数 在在卡卡诺诺图图中中,由由行行和和列列两两组组变变量量构构成成的的每每一一个个小小方方格格,都都代代表表了了逻逻辑辑函函数数的的一一个个最最小小项项,变变量量取取值值为为1的的代代表表原原变变量,为量,为0的代表反变量。的代表反变量。11111)由变量数选定卡诺图)由变量数选定卡

37、诺图2)所含最小项对应格填)所含最小项对应格填176第76页,此课件共100页哦若若逻逻辑辑函函数数为为一一般般的的与与或或表表达达式式,无无需需先先变变换换成成最最小小项项表表达式,可直接将其填写在卡诺图中。达式,可直接将其填写在卡诺图中。1 1 1 111 1 1 177第77页,此课件共100页哦4.用卡诺图化简逻辑函数用卡诺图化简逻辑函数(1)相邻小方格的合并规则)相邻小方格的合并规则卡卡诺诺图图中中,凡凡相相邻邻的的两两个个小小方方格格(此此称称几几何何相相邻邻)都都具具有有逻逻辑辑相相邻邻性性,也也就就是是它它们们只只有有一一个个变变量量取取值值不同,其他变量取值相同。不同,其他变

38、量取值相同。逻逻辑辑相相邻邻的的最最小小项项相相或或时时,可可利利用用公公式式进行合并,合并时应注意以下规则:进行合并,合并时应注意以下规则:78第78页,此课件共100页哦 1)两两个个相相邻邻小小方方格格可可以以合合并并成成一一个个乘乘积积项项,且且消消去去一一个变量。个变量。ABC000111100111=BC(A+A)=BCY=ABC+ABC利用A+A=1的关系11AC11AB79第79页,此课件共100页哦2)4(22)个个相相邻邻的的小小方方格格可可合合并并成成一一个个乘乘积积项项,且且消消去两个变量。去两个变量。ABC0001111001 1111Y=ABC+ABC+ABC+AB

39、C=AC(B+B)+AC(B+B)=AC+AC=CABC0001111001 1111Y=AY=ABC+ABC+ABC+ABC80第80页,此课件共100页哦ABCD00011110000111101111Y=BDABCD0001111000011110Y=C1 11 11 11 11 11 11 11 1 3 3)如果是八个相邻单元取值同为)如果是八个相邻单元取值同为1 1,则可以合并,则可以合并,并消去三个变量。并消去三个变量。81第81页,此课件共100页哦ABCD0001111000011110Y=AABCD000111100001111011111111Y=D1 1 1 11 1 1

40、 11 1 1 11 1 1 11 1 1 11 1 1 14 4)如果是)如果是2 2n n个相邻单元取值同为个相邻单元取值同为1 1,则可以合并,则可以合并,并消去并消去n n个变量。个变量。82第82页,此课件共100页哦(2)用卡诺图化简逻辑函数的步骤)用卡诺图化简逻辑函数的步骤1)用卡诺图表示逻辑函数。)用卡诺图表示逻辑函数。将将逻逻辑辑函函数数F变变换换成成与与或或式式,凡凡在在F中中包包含含有有的的最最小小项项,在在其其卡卡诺诺图图相相应应的的小小方方格格中中填填1,其其余余的的小小方方格格空空着着或或填填0。83第83页,此课件共100页哦2)合并最小项)合并最小项将将相相邻邻

41、的的为为1的的小小方方格格圈圈在在一一起起,画画图图时时要要将将尽尽可可能能多多的的小方格圈在一起,圈画得越大,消去的变量就越多。小方格圈在一起,圈画得越大,消去的变量就越多。所所画画的的圈圈内内都都必必须须至至少少包包含含一一个个未未被被圈圈过过的的小小项项,否否则所得的乘积项是冗余项。则所得的乘积项是冗余项。84第84页,此课件共100页哦ABCD00011110000111101111错误的圈法错误的圈法正确的圈法正确的圈法所所画画的的圈圈必必须须是是矩矩形形,并并且且个个数数为为2n,一一般般是是先先画画大大圈圈,最后圈孤立的单个的小方格。最后圈孤立的单个的小方格。85第85页,此课件

42、共100页哦ABCD000111100001111011111111ABCD00011110000111101111 1111注意注意注意注意:1.1.化简完成后要检查有无多余的圈。化简完成后要检查有无多余的圈。2.2.最简结果不唯一。最简结果不唯一。Y=ABD+ABC+ABD+ABC+CD冗余项冗余项86第86页,此课件共100页哦3)根根据据所所画画的的圈圈写写相相应应的的乘乘积积项项,将将各各乘乘积积项项相相或或,便便可得到化简后的逻辑函数可得到化简后的逻辑函数F的与或表达式。的与或表达式。87第87页,此课件共100页哦例例 2-14 2-14 用卡诺图化简逻辑函数用卡诺图化简逻辑函数

43、 ABCD00011110000111101 1111111188第88页,此课件共100页哦2.5具有无关项逻辑函数的化简具有无关项逻辑函数的化简 根根据据逻逻辑辑命命题题写写出出逻逻辑辑函函数数通通常常有有两两大大类类;一一类类逻逻辑辑函函数数的的逻逻辑辑值值是是完完全全确确定定的的,它它不不是是逻逻辑辑1就就是是逻逻辑辑0,这这类类逻逻辑辑函函数数的的化化简简可可按按上上述述的的方方法法进进行;行;另另一一类类逻逻辑辑函函数数值值对对于于某某些些最最小小项项却却是是不不完完全全确确定的,这类逻辑函数又有以下两种情况:定的,这类逻辑函数又有以下两种情况:89第89页,此课件共100页哦1)

44、任任意意项项:输输入入变变量量的的某某些些取取值值的的组组合合根根本本不不存存在在,或或者者某某些些取取值值的的组组合合也也确确实实存存在在,但但它它的的存存在在对对逻逻辑辑函函数数的的输输出出没没有有任任何何影影响响。如如BCD码码中中16种种组组合合中中未未使使用用的的6种种组合。组合。2)约约束束项项:输输入入变变量量的的某某些些取取值值的的组组合合实实际际存存在在,但但对对逻逻辑辑函函数数来来讲讲是是不不允允许许它它出出现现的的。如如电电机机的的正正转转、反反转转和停止的状态之间的关系。和停止的状态之间的关系。2.5具有无关项逻辑函数的化简具有无关项逻辑函数的化简90第90页,此课件共

45、100页哦通常将任意项和约束项统称为通常将任意项和约束项统称为无关项无关项。可采用以下方。可采用以下方式进行表示。式进行表示。2.5具有无关项逻辑函数的化简具有无关项逻辑函数的化简91第91页,此课件共100页哦无关项在无关项在卡诺图卡诺图中用中用 或或X表示。表示。对具有无关项的逻辑函数来讲,其对具有无关项的逻辑函数来讲,其无关项的取值无论使逻无关项的取值无论使逻辑函数为辑函数为1或为或为0,都不会影响原函数的逻辑功能,因而,都不会影响原函数的逻辑功能,因而,将此类逻辑函数进行化简时,可以利用其无关项使逻辑函将此类逻辑函数进行化简时,可以利用其无关项使逻辑函数得到进一步的化简。数得到进一步的

46、化简。2.5具有无关项逻辑函数的化简具有无关项逻辑函数的化简92第92页,此课件共100页哦例例2-13的的水水位位控控制制真真值值表表,如如左左表表所所示示。除除表表中中的的4种种取取值外,其他值外,其他4种情况均为无关项,完整的真值表如右表所示。种情况均为无关项,完整的真值表如右表所示。93第93页,此课件共100页哦94第94页,此课件共100页哦2.6用用Multisim2001进行逻辑函数的进行逻辑函数的化简与变换(演示)化简与变换(演示)通过通过Multisim2001中的中的“逻辑转换器逻辑转换器”可以完成逻可以完成逻辑函数的化简与变换。辑函数的化简与变换。95第95页,此课件共

47、100页哦例例2-15已知逻辑函数已知逻辑函数F的真值表如下图所示,试用的真值表如下图所示,试用Multisim2001求出求出F的逻辑函数式,并将其化简为最的逻辑函数式,并将其化简为最简与或形式。简与或形式。96第96页,此课件共100页哦解:启动解:启动Multisim2001以后,选择仪表工具栏中的以后,选择仪表工具栏中的“LogicConverter”(逻辑转换器),点击逻辑转换器图(逻辑转换器),点击逻辑转换器图标标“XLC1”,弹出下图所示的逻辑转换器操作窗口,弹出下图所示的逻辑转换器操作窗口“LogicconverterXLC1”。97第97页,此课件共100页哦点击上图点击上图

48、“Conversions”选项中的第三个按钮,便可得到选项中的第三个按钮,便可得到最简与或式。最简与或式。化简结果出现在操作窗口底部一栏中,如下图所示。化简结果出现在操作窗口底部一栏中,如下图所示。98第98页,此课件共100页哦从上图可以看到,利用从上图可以看到,利用“Conversions”选项中的六个按选项中的六个按钮,可以在逻辑函数的钮,可以在逻辑函数的真值表真值表、最小项之和形式最小项之和形式的函数的函数式、式、最简与或式最简与或式以及以及逻辑图逻辑图之间任意进行转换。之间任意进行转换。99第99页,此课件共100页哦本章首先介绍了计算机等数字设备中的本章首先介绍了计算机等数字设备中的常用数制与代码常用数制与代码。重点介绍了重点介绍了逻辑代数的公式和定理逻辑代数的公式和定理、逻辑函数的表示方逻辑函数的表示方法及其相互转换法及其相互转换、逻辑函数的化简方法逻辑函数的化简方法。采用采用Multisim2001化简逻辑函数化简逻辑函数。本章小结本章小结100第100页,此课件共100页哦

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁