《黑龙江省哈尔滨市依兰县市级名校2022-2023学年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省哈尔滨市依兰县市级名校2022-2023学年中考联考数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长( )ABCD2计算结果是( )A0B1C1Dx3如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相
2、似,则原长方形纸片的边应满足的条件是( )ABCD4如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.55我国古代数学著作孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )ABCD6已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x22x+kb+1=0 的根的情况是( )A有两个不相等的实数根B没
3、有实数根C有两个相等的实数根D有一个根是 07多项式4aa3分解因式的结果是()Aa(4a2) Ba(2a)(2+a) Ca(a2)(a+2) Da(2a)28下列运算正确的是()Aa3a2=a6B(a2)3=a5C =3D2+=29如图,在RtABC中,BC=2,BAC=30,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:若C,O两点关于AB对称,则OA=;C,O两点距离的最大值为4;若AB平分CO,则ABCO;斜边AB的中点D运动路径的长为其中正确的是()ABCD10内角和为540的多边形是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11袋中装有一个红球
4、和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_12如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为_.13一元二次方程2x23x40根的判别式的值等于_14在矩形ABCD中,AB=4, BC=3, 点P在AB上若将DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为_15两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于_16计算(a2b)3=_17一个两位数,个位数字比十位数字大4,且个位数
5、字与十位数字的和为10,则这个两位数为_三、解答题(共7小题,满分69分)18(10分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,ABC和ABC是他们自制的直角三角板,且ABCABC,小颖和小明分别站在旗杆的左右两侧,小颖将ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将ABC的直角边BC平行于地面,眼睛通过斜边BA观察,一边观察一边走动,使得B、A、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,
6、BE=1.5米,(他们的眼睛与直角三角板顶点A,B的距离均忽略不计),且AD、MN、BE均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.19(5分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数20(8分)如图,一只蚂蚁从点A
7、沿数轴向右直爬2个单位到达点B,点A表示,设点B所表示的数为m求m的值;求|m1|+(m+6)0的值21(10分)(1)计算:|2|(2015)0+()22sin60+;(2)先化简,再求值:(2+),其中a= 22(10分)如图,BD为ABC外接圆O的直径,且BAE=C求证:AE与O相切于点A;若AEBC,BC=2,AC=2,求AD的长23(12分)综合与探究:如图1,抛物线y=x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点经过点A的直线l与y轴交于点D(0,)(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的
8、正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A,连接FA、BA,设直线l的运动时间为t(t0)秒探究下列问题:请直接写出A的坐标(用含字母t的式子表示);当点A落在抛物线上时,求直线l的运动时间t的值,判断此时四边形ABEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由24(14分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)参考答案一
9、、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】过O作直线OEAB,交CD于F,由CD/AB可得OABOCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OEAB,交CD于F,AB/CD,OFCD,OE=12,OF=2,OABOCD,OE、OF分别是OAB和OCD的高,即,解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.2、C【解析】试题解析:.故选C.考点:分式的加减法.3、B【解析】由题图可知:得对折两次后得到的小长方形
10、纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,小长方形与原长方形相似,故选B【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键4、A【解析】分析:作OHBC于H,首先证明BOC=120,在RtBOH中,BH=OBsin60=1,即可推出BC=2BH=,详解:作OHBC于HBOC=2BAC,BOC+BAC=180,BOC=120,OHBC,OB=OC,BH=HC,BOH=HOC=60,在RtBOH中,BH=OBsin60=1,BC=2BH=.故选A点睛:本题考查三角形的外接圆与
11、外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线5、A【解析】本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此列方程组即可求解【详解】设绳子长x尺,木条长y尺,依题意有故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组6、A【解析】判断根的情况,只要看根的判别式=b24ac的值的符号就可以了【详解】一次函数y=kx+b的图像经过第一、三、四象限k0, b0,方程x22x+kb+1=0有两个不等的实数根,故选A【点睛】根的判别式7、B【解析】首先提取公因式a,再利用平方差公式分解因式得出答案【详解】4aa3=a(4a2
12、)=a(2a)(2+a)故选:B【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键8、C【解析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项【详解】解:A. a3a2=a5,原式计算错误,故本选项错误;B. (a2)3=a6,原式计算错误,故本选项错误;C. =3,原式计算正确,故本选项正确;D. 2和不是同类项,不能合并,故本选项错误故选C.【点睛】本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则.9、D【解析】分析:先根据直角三角形30的性质和勾股定理分别求AC和AB,由对称的性质可知
13、:AB是OC的垂直平分线,所以当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;如图2,当ABO=30时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;如图3,半径为2,圆心角为90,根据弧长公式进行计算即可详解:在RtABC中, 若C.O两点关于AB对称,如图1,AB是OC的垂直平分线,则所以正确;如图1,取AB的中点为E,连接OE、CE, 当O
14、C经过点E时,OC最大,则C.O两点距离的最大值为4;所以正确;如图2,当时, 四边形AOBC是矩形,AB与OC互相平分,但AB与OC的夹角为不垂直,所以不正确;如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的则:所以正确;综上所述,本题正确的有:;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.10、C【解析】试题分析:设它是n边形,根据题意得,(n2)180=140,解得n=1故选C考点:多边形内角与外角二、填空题(共7小题,每小题3分,满分21分)11
15、、 【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为【点睛】此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验12、-1【解析】试题分析:正方形ADEF的面积为4,正方形ADEF的边长为2,BF=2AF=4,AB=AF+BF=2+4
16、=1设B点坐标为(t,1),则E点坐标(t-2,2),点B、E在反比例函数y=的图象上,k=1t=2(t-2),解得t=-1,k=-1考点:反比例函数系数k的几何意义13、41【解析】已知一元二次方程的根判别式为b24ac,代入计算即可求解.【详解】依题意,一元二次方程2x23x40,a2,b3,c4根的判别式为:b24ac(3)242(4)41故答案为:41【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax2+bx+c0(a0)的根的判别式为b24ac是解决问题的关键.14、或【解析】点A落在矩形对角线BD上,如图1,AB=4,BC=3,BD=5,根据折叠的性质,AD=AD=
17、3,AP=AP,A=PAD=90,BA=2,设AP=x,则BP=4x,BP2=BA2+PA2,(4x)2=x2+22,解得:x=,AP=;点A落在矩形对角线AC上,如图2,根据折叠的性质可知DPAC,DAPABC,AP=故答案为或15、4或1【解析】两圆内切,一个圆的半径是6,圆心距是2,另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1【点睛】本题考查了根据两圆位置关系来求圆的半径的方法注意圆的半径是6,要分大圆和小圆两种情况讨论16、a6b3【解析】根据积的乘方和幂的乘方法则计算即可【详解】原式=(a2b)3=a6b3,故答案为a6b3.【点睛】本题考查了积的乘方和幂
18、的乘方,关键是掌握运算法则.17、37【解析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,这个两位数为:37【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.三、解答题(共7小题,满分69分)18、11米【解析】过点C作CEMN于E,过点C作CFMN于F,则EFBEAD1.510.5(m),AEDN19,BFEN5,根据相似三角形的性质即可得到结论【详解】解:过点C作CEMN于E,过点C作CFMN于F,则EFBEAD1.510.5(m),AEDN19,BFEN5,ABCABC,
19、MAEBMF,AEMBFM90,AMFMBF, , MF , 答:旗杆MN的高度约为11米【点睛】本题考查了相似三角形的应用,正确的作出辅助线是解题的关键19、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);扇形统计图中“基本了解”部分所对应扇形的圆心角为:360=90;故答
20、案为60,90;(2)60153010=5;补全条形统计图得:(3)根据题意得:900=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.20、(1)2- ;(2)【解析】试题分析: 点表示 向右直爬2个单位到达点,点表示的数为 把的值代入,对式子进行化简即可试题解析: 由题意点和点的距离为,其点的坐标为 因此点坐标把的值代入得: 21、(1)5+;(2)【解析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的
21、化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=21+42+2=21+4+2=5+;(2)原式=,当a=时,原式=22、(1)证明见解析;(2)AD=2【解析】(1)如图,连接OA,根据同圆的半径相等可得:D=DAO,由同弧所对的圆周角相等及已知得:BAE=DAO,再由直径所对的圆周角是直角得:BAD=90,可得结论;(2)先证明OABC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可【详解】(1)如图,连接OA,交BC于F,则OA=OB,D=DAO,D=C,C=DAO,BAE=C
22、,BAE=DAO,BD是O的直径,BAD=90,即DAO+BAO=90,BAE+BAO=90,即OAE=90,AEOA,AE与O相切于点A;(2)AEBC,AEOA,OABC,FB=BC,AB=AC,BC=2,AC=2,BF=,AB=2,在RtABF中,AF=1,在RtOFB中,OB2=BF2+(OBAF)2,OB=4, BD=8,在RtABD中,AD=【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”23、(1)A(1,0),B(3,0),y=x;(2)A(t1, t);ABEF为菱形,见解析;
23、(3)存在,P点坐标为(,)或(,)【解析】(1)通过解方程x2+x+0得A(1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)作AHx轴于H,如图2,利用OA1,OD得到OAD60,再利用平移和对称的性质得到EAEAt,AEFAEF60,然后根据含30度的直角三角形三边的关系表示出AH,EH即可得到A的坐标;把A(t1,t)代入yx2x得(t1)2(t1)t,解方程得到t2,此时A点的坐标为(2,),E(1,0),然后通过计算得到AFBE2,AFBE,从而判断四边形ABEF为平行四边形,然后加上EFBE可判定四边形ABEF为菱形;(3)讨论:当ABBE时,四边形ABEP为矩
24、形,利用点A和点B的横坐标相同得到t13,解方程求出t得到A(3,),再利用矩形的性质可写出对应的P点坐标;当ABEA,如图4,四边形ABPE为矩形,作AQx轴于Q,先确定此时A点的坐标,然后利用点的平移确定对应P点坐标【详解】(1)当y=0时,x2+x+=0,解得x1=1,x2=3,则A(1,0),B(3,0),设直线l的解析式为y=kx+b,把A(1,0),D(0,)代入得,解得,直线l的解析式为y=x;(2)作AHx轴于H,如图,OA=1,OD=,OAD=60,EFAD,AEF=60,点A 关于直线l的对称点为A,EA=EA=t,AEF=AEF=60,在RtAEH中,EH=EA=t,AH
25、=EH=t,OH=OE+EH=t1+t=t1,A(t1, t);把A(t1, t)代入y=x2+x+得(t1)2+(t1)+=t,解得t1=0(舍去),t2=2,当点A落在抛物线上时,直线l的运动时间t的值为2;此时四边形ABEF为菱形,理由如下:当t=2时,A点的坐标为(2,),E(1,0),OEF=60OF=OE=,EF=2OE=2,F(0,),AFx轴,AF=BE=2,AFBE,四边形ABEF为平行四边形,而EF=BE=2,四边形ABEF为菱形;(3)存在,如图:当ABBE时,四边形ABEP为矩形,则t1=3,解得t=,则A(3,),OE=t1=,此时P点坐标为(,);当ABEA,如图,
26、四边形ABPE为矩形,作AQx轴于Q,AEA=120,AEB=60,EBA=30BQ=AQ=t=t,t1+t=3,解得t=,此时A(1,),E(,0),点A向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,),综上所述,满足条件的P点坐标为(,)或(,)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质24、答案见解析【解析】根据轴对称的性质作出线段AC的垂直平分线即可得【详解】如图所示,直线EF即为所求【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图