青海师范大学附属第二中学2023年高考适应性考试数学试卷含解析.doc

上传人:茅**** 文档编号:88322202 上传时间:2023-04-25 格式:DOC 页数:21 大小:2.24MB
返回 下载 相关 举报
青海师范大学附属第二中学2023年高考适应性考试数学试卷含解析.doc_第1页
第1页 / 共21页
青海师范大学附属第二中学2023年高考适应性考试数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《青海师范大学附属第二中学2023年高考适应性考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《青海师范大学附属第二中学2023年高考适应性考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函,则的最小值为( )AB1C0D2已知函数(其中,)的图象关于点成中心对称,且与点相邻的一个最低

2、点为,则对于下列判断:直线是函数图象的一条对称轴;点是函数的一个对称中心;函数与的图象的所有交点的横坐标之和为.其中正确的判断是( )ABCD3已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是( )ABCD4已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为( )ABCD5已知椭圆+=1(ab0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若ABF是直角三角形,则该椭圆的离心率为( )ABCD6已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点给出以下判断:直线与直线的斜率乘积为;轴;以为直径的圆与抛物线准线相切.其

3、中,所有正确判断的序号是( )ABCD7已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量服从正态分布,则,)A4.56%B13.59%C27.18%D31.74%8若的展开式中的系数为-45,则实数的值为()AB2CD9若两个非零向量、满足,且,则与夹角的余弦值为( )ABCD10如图,在三棱锥中,平面,分别是棱,的中点,则异面直线与所成角的余弦值为A0BCD111如图,在三棱锥中,平面,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( )ABCD12下列图形中,不是三棱柱展开图的是( )ABCD二、填

4、空题:本题共4小题,每小题5分,共20分。13如图所示,在ABC中,AB=AC=2,AE的延长线交BC边于点F,若,则_.14在平面直角坐标系中,点在曲线:上,且在第四象限内已知曲线在点处的切线为,则实数的值为_15函数在区间(-,1)上递增,则实数a的取值范围是_16已知向量,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框

5、的两条对称轴成轴对称设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?18(12分)已知函数.(1)当时,求不等式的解集;(2)若的图象与轴围成的三角形面积大于6,求的取值范围.19(12分)如图,在四棱柱中,底面是正方形,平面平面,.过顶点,的平面与棱,分别交于,两点.()求证:;()求证:四边形是平行四边形;()若,试判断二面角的大小能否为?说明理由.20(12分)如图,在四棱锥P-ABCD中,底面A

6、BCD是边长为2的菱形,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.21(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.22(10分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份

7、20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份20140需求量2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: ,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,利用整体换元法求最小值.【详解】由已知

8、,又,故当,即时,.故选:B.【点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.2、C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否详解:因为为对称中心,且最低点为,所以A=3,且 由 所以,将带入得 ,所以由此可得错误,正确,当时,所以与 有6个交点,设各个交点坐标依次为 ,则,所以正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题3、B【解析】先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共

9、点,可得,解得即可【详解】由题意,双曲线的一条渐近线方程为,即,是直线上任意一点,则直线与直线的距离,圆与双曲线的右支没有公共点,则,即,又故的取值范围为,故选:B【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题4、B【解析】令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,解得.故选:B.【点睛】本题考查复合方程根的个数问题,涉及到一

10、元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.5、A【解析】联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,=0,因为,由平面向量垂直的坐标表示可得, 因为,所以a2-c2=ac,两边同时除以可得,解得e=或(舍去),所以该椭圆的离心率为.故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.6、B【解析

11、】由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,从而,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线的方程为,代入抛物线的方程,有设点,的坐标分别为,则,所则直线与直线的斜率乘积为所以正确将代入抛物线的方程可得,从而,根据抛物线的对称性可知,两点关于轴对称,所以直线轴所以正确如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,则所以不正确

12、故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题7、B【解析】试题分析:由题意故选B考点:正态分布8、D【解析】将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】所以展开式中的系数为,解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.9、A【解析】设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,可得,在等式两边平方得,化简得

13、.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.10、B【解析】根据题意可得平面,则即异面直线与所成的角,连接CG,在中,易得,所以,所以,故选B11、A【解析】根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率【详解】由已知平面,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为故选:A【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数12、C【解析】根据三棱柱的展开图的可能情况选出选项.【

14、详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】过点做,可得,由可得,可得,代入可得答案.【详解】解:如图,过点做,易得:,故,可得:,同理:,可得,由,可得,可得:,可得:,,故答案为:.【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.14、【解析】先设切点,然后对求导,根据切线方程的斜率求出切点的横坐标,代入原函数求出切点的纵坐标,即可得出切得,最后将切点代入切线方程即可求出实数的值.【详解】解:依题意设切点,因为,

15、则,又因为曲线在点处的切线为,解得,又因为点在第四象限内,则,.则又因为点在切线上.所以.所以.故答案为: 【点睛】本题考查了导数的几何意义,以及导数的运算法则和已知切线斜率求出切点坐标,本题属于基础题.15、【解析】根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:【点睛】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.16、2【解析】由得,算出,再代入算出即可.【详解】,解得:,则.故答案为:2【点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模

16、的计算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由条件可先求水平方向每根支条长,竖直方向每根支条长为,因此所需木料的长度之和L=(2)先确定范围由可得,再由面积为130 cm2,得,转化为一元函数,令,则在上为增函数,解得L有最小值试题解析:(1)由题意,水平方向每根支条长为cm,竖直方向每根支条长为cm,菱形的边长为cm从而,所需木料的长度之和L=cm(2)由题意,即,又由可得所以令,其导函数在上恒成立,故在上单调递减,所以可得则=因为函数和在上均为增函数,所以在上为增函数,故当,即时L有最小值答:做这样一个窗芯至少需要cm长的

17、条形木料考点:函数应用题18、()()(2,+)【解析】试题分析:()由题意零点分段即可确定不等式的解集为;()由题意可得面积函数为为,求解不等式可得实数a的取值范围为 试题解析:(I)当时,化为, 当时,不等式化为,无解; 当时,不等式化为,解得; 当时,不等式化为,解得 所以的解集为 (II)由题设可得, 所以函数的图像与x轴围成的三角形的三个顶点分别为,的面积为 由题设得,故 所以a的取值范围为 19、(1)证明见解析;(2)证明见解析;(3)不能为.【解析】(1)由平面平面,可得平面,从而证明;(2)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(3)作交于点,延

18、长交于点,连接,根据三垂线定理,确定二面角的平面角,若,由大角对大边知,两者矛盾,故二面角的大小不能为.【详解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(3)不能.如图,作交于点,延长交于点,连接,由,所以平面,则平面,又,根据三垂线定理,得到,所以是二面角的平面角,若,则是等腰直角三角形,又,所以中,由大角对大边知,所以,这与上面相矛盾,所以二面角的大小不能为.【点睛】本题考查了立体几何中的线线平行和垂直的判定问题,和二面角的

19、求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,属中档题.20、(1)(2)(3)直线平面,证明见解析【解析】取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系,求出平面的一个法向量(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐标,由,结合平面,可得直线平面【详解】底面是边长为2的菱形,为等边三角形取中点,连接,则,为等边三角形,又平面平面,且平面平面,平面以为坐标原点

20、,分别以,所在直线为,轴建立空间直角坐标系则,1,0,0,设平面的一个法向量为由,取,得(1)证明:设直线与平面所成角为,则,即直线与平面所成角的正弦值为;(2)设平面的一个法向量为,由,得二面角的余弦值为;(3),又平面,直线平面【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题21、(1),(1,2);(2)存在,【解析】(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的

21、关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为 抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意,可得,解得m-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在实数=满足条件.【点睛】本题主要考查抛物线方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目

22、,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.22、(1)见解析;(2)能够满足.【解析】(1)根据表中数据,结合以“年份2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.【详解】(1)由所给数据和已知条件,对数据处理表格如下:年份2014024需求量25701929(2)由题意可知,变量与之间具有线性相关关系,由(1)中表格可得,.由上述计算结果可知,所求回归直线方程为,利用回归直线方程,可预测2020年的粮食需求量为:(万吨),因为,故能够满足该地区的粮食需求.【点睛】本题考查了线性回归直线的求法及预测应用,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁