《黑龙江省伊春市嘉荫县重点中学2023年中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省伊春市嘉荫县重点中学2023年中考考前最后一卷数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知直线AB、CD被直线AC所截,ABCD,E是平面内任意一点(点E不在直线AB、CD、AC上),设BAE=,DCE=下列各式:+,360,AEC的度数可能是()ABCD2在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽
2、为,那么满足的方程是( )ABCD3式子有意义的x的取值范围是( )A且x1Bx1CD且x14如图是由四个小正方体叠成的一个几何体,它的左视图是( )ABCD5如图图形中,可以看作中心对称图形的是()ABCD6下列实数中,为无理数的是()ABC5D0.31567已知:如图,在ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若AGC的周长为31cm,AB=20cm,则ABC的周长为()A31cmB41cmC51cmD61cm8如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )Aab0Bab 0CD9按一定规律排列的一列数依次为:,1,、,按此规律,这列数中的第100个数是
3、()ABCD10下列图形中为正方体的平面展开图的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_个12如图,在等腰ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_cm13近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人 数4812115则该办学生成绩的众
4、数和中位数分别是( )A70分,80分 B80分,80分 C90分,80分 D80分,90分14若m22m1=0,则代数式2m24m+3的值为 15分解因式:a3-12a2+36a=_16观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_17已知RtABC中,C=90,AC=3,BC=,CDAB,垂足为点D,以点D为圆心作D,使得点A在D外,且点B在D内设D的半径为r,那么r的取值范围是_三、解答题(共7小题,满分69分)18(10分)如图,抛物线yax2+bx2经过点A(4,0),B(1,0)(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求DCA面积的最
5、大值;(3)P是抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由19(5分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线yx22x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线yx22x+3与直线yx1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值20(8分)如图
6、,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(3,n)两点求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b的解集;过点B作BCx轴,垂足为C,求SABC21(10分)如图,一次函数y=2x4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1(1)求反比例函数的解析式;(2)点P是x轴上一动点,ABP的面积为8,求P点坐标22(10分)如图,点在的直径的延长线上,点在上,且AC=CD,ACD=120.求证:是的切线;若的半径为2,求图中阴影部分的面积.23(12分)如图,已知AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM
7、=PN(保留作图痕迹,不写作法)24(14分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示(1)求甲组加工零件的数量y与时间x之间的函数关系式(2)求乙组加工零件总量a的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由ABCD,可得AOC=DCE1=AOC=BAE1+AE1C,AE1C=-过点E2作A
8、B的平行线,由ABCD,可得1=BAE2=,2=DCE2=AE2C=+由ABCD,可得BOE3=DCE3=BAE3=BOE3+AE3C,AE3C=-由ABCD,可得BAE4+AE4C+DCE4=360,AE4C=360-AEC的度数可能是+,-,360,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.2、B【解析】根据矩形的面积=长宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为,得出方程:(80+2x)(50+2x)=5400,整理后得:故选:
9、B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.3、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且故选A4、A【解析】试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是故选A考点:简单组合体的三视图5、D【解析】根据 把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形
10、,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义6、B【解析】根据无理数的定义解答即可.【详解】选项A、是分数,是有理数;选项B、是无理数;选项C、5为有理数;选项D、0.3156是有理数;故选B【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.7、C【解析】DG是AB边的垂直平分线,GA=GB,AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,ABC的周长=AC+BC+AB=51cm,故选C.8、C【解析】本题要先观察a,b在数轴上的位置,得b-10a1,然后对四个选项
11、逐一分析【详解】A、因为b-10a1,所以|b|a|,所以a+b0,故选项A错误;B、因为b0a,所以ab0,故选项B错误;C、因为b-10a1,所以+0,故选项C正确;D、因为b-10a1,所以-0,故选项D错误故选C【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数9、C【解析】根据按一定规律排列的一列数依次为:,1,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、,型;分子为型,可得第100个数为【详解】按一定规律排列的一列数依次为:,1,按此规律,奇数项为负,偶数项为正,分母为3、7、9、,型;分子为型,可得第n个数为,当时,这个数为,故选:C【点睛】本题属
12、于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.10、C【解析】利用正方体及其表面展开图的特点依次判断解题【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、5【解析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的
13、线段为x,则,解得x=3,所以另一段长为18-3=15,因为153=5,所以是第5张故答案为:5.【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.12、 【解析】根据三角形的面积公式求出,根据等腰三角形的性质得到BDDCBC,根据勾股定理列式计算即可【详解】AD是BC边上的高,CE是AB边上的高,ABCEBCAD,AD6,CE8,ABAC,ADBC,BDDCBC,AB2BD2AD2,AB2BC236,即BC2BC236,解得:BC故答案为:【点睛】本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求
14、出腰与底的比是解题的关13、B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B考点:1.众数;2.中位数.14、1【解析】试题分析:先求出m22m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解解:由m22m1=0得m22m=1,所以,2m24m+3=2(m22m)+3
15、=21+3=1故答案为1考点:代数式求值15、a(a-6)2【解析】原式提取a,再利用完全平方公式分解即可【详解】原式=a(a2-12a+36)=a(a-6)2, 故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键16、1【解析】由n行有n个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论【详解】解:第1行1个数,第2行2个数,第3行3个数,第9行9个数,第10行第8个数为第1+2+3+9+8=1个数又第2n1个数为2n1,第2n个数为2n,第10行第8个数应该是1故答案为:1【点睛】本题考查了规律型中数字的变化类,
16、根据数的变化找出变化规律是解题的关键17、【解析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论【详解】解:RtABC中,ACB=90,AC=3,BC=,AB=1CDAB,CD=ADBD=CD2,设AD=x,BD=1-x解得x=,点A在圆外,点B在圆内,r的范围是,故答案为【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键三、解答题(共7小题,满分69分)18、(1)y=x2+x2;(2)当t=2时,DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,2)或(3,14)【解析】(1)把A与B坐标代入解析式求出a与b的值,即可确定
17、出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与OAC相似,分当1m4时;当m1时;当m4时三种情况求出点P坐标即可【详解】(1)该抛物线过点A(4,0),B(1,0),将A与B代入解析式得:,解得:,则此抛物线的解析式为y=x2+x2;(2)如图,设D点的横坐标为t(0t4),则D点的纵坐标为t2+t2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x2,E点的坐标为(t,t2),DE=t2+t2(t2)=t2+2t,S
18、DAC=(t2+2t)4=t2+4t=(t2)2+4,则当t=2时,DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为m2+m2,当1m4时,AM=4m,PM=m2+m2,又COA=PMA=90,当=2时,APMACO,即4m=2(m2+m2),解得:m=2或m=4(舍去),此时P(2,1);当=时,APMCAO,即2(4m)=m2+m2,解得:m=4或m=5(均不合题意,舍去)当1m4时,P(2,1);类似地可求出当m4时,P(5,2);当m1时,P(3,14),综上所述,符合条件的点P为(2,1)或(5,2)或(3,14)【点睛】本题综合考查了抛物线解析式的求法,抛
19、物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论19、(1)2;(2)不同意他的看法,理由详见解析;(3)c1【解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x22x+3任
20、意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=x22x+3与抛物线的“亲近距离”,所以,然后解方程即可【详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与x轴的“亲近距离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线y=x22x+3与直线y=x1的“
21、亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最小值为c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键20、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)3x0或x2;(3)1【解析】(1)根据点
22、A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)点A(2,3)在y=的图象上,m=6,反比例函数的解析式为:y=,n=2,A(2,3),B(3,2)两点在y=kx+b上,解得:,一次函数的解析式为:y=x+1;(2)由图象可知3x0或x2;(3)以BC为底,则BC边上的高为3+2=1,SABC=21=121、(1)y=;(2)(
23、4,0)或(0,0)【解析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x4,可得y=214=2,A(1,2),把(1,2)代入y=,可得k=12=6,反比例函数的解析式为y=;(2)根据题意可得:2x4=,解得x1=1,x2=1,把x2=1,代入y=2x4,可得y=6,点B的坐标为(1,6)设直线AB与x轴交于点C,y=2x4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则|x2|(2+6)=8,解得x=
24、4或0,点P的坐标为(4,0)或(0,0)【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。22、(1)见解析(2)图中阴影部分的面积为.【解析】(1)连接OC只需证明OCD90根据等腰三角形的性质即可证明;(2)先根据直角三角形中30的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积【详解】(1)证明:连接OCACCD,ACD120,AD30OAOC,2A30OCDACD290,即OCCD,CD是O的切线;(2)解:12A60S扇形BOC在RtOCD中,D30,O
25、D2OC4,CDSRtOCDOCCD2图中阴影部分的面积为:23、见解析【解析】作AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.【详解】解:作AOB的平分线OE,作线段MN的垂直平分线GH,GH交OE于点P点P即为所求【点睛】本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.24、(1)y=60x;(2)300【解析】(1)由题图可知,甲组的y是x的正比例函数.设甲组加工的零件数量y与时间x的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以,解得a=300.