《静宁县第一中学2023届高三下学期第五次调研考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《静宁县第一中学2023届高三下学期第五次调研考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为( )A或B或C或D或2中,角的对边分别为,若,则的面积为( )ABCD3已知
2、复数满足(是虚数单位),则=()ABCD4已知,则的大小关系为ABCD5在边长为1的等边三角形中,点E是中点,点F是中点,则( )ABCD6若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD7已知函数在上都存在导函数,对于任意的实数都有,当时,若,则实数的取值范围是( )ABCD8如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )ABCD9阿波罗尼斯(约公元前262190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,不共线时,的面积的最大值是( )ABCD10已
3、知集合,则集合真子集的个数为( )A3B4C7D811将函数的图像向左平移个单位得到函数的图像,则的最小值为( )ABCD12若单位向量,夹角为,且,则实数( )A1B2C0或1D2或1二、填空题:本题共4小题,每小题5分,共20分。13将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为_.14如图,在中,已知,为边的中点若,垂足为,则的值为_ 15设满足约束条件,则的取值范围是_.16已知数列的各项均为正数,记为的前n项和,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算
4、步骤。17(12分)已知,.(1)解;(2)若,证明:.18(12分)已知数列满足,,数列满足.()求证数列是等比数列;()求数列的前项和.19(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值20(12分)如图,四棱锥中,四边形是矩形,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.21(12分)设数列的前项和为,且,数列满足,点在上, (1)求数列,的通项公式;(2)设,求数列的前项和22(10分)已知函数(1)当时,证明,在恒成立;(2
5、)若在处取得极大值,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,根据和抛物线性质得出,再根据双曲线性质得出,最后根据余弦定理列方程得出、间的关系,从而可得出离心率【详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,则,为双曲线上的点,则,即,得,又,在中,由余弦定理可得,整理得,即,解得或.故选:D.【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题2、A【解析】先求出,由正弦定理求得,然后由面积公式计算【详解】由题意,由得,故选:A【点睛】
6、本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解3、A【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】解:由,得,故选【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题4、D【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,即,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数
7、的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确5、C【解析】根据平面向量基本定理,用来表示,然后利用数量积公式,简单计算,可得结果.【详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C【点睛】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.6、C【解析】利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.7、B【解
8、析】先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,又,所以为偶函数, 从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.8、A【解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。9、A【解析】根据平面内两定点,间
9、的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,则,化简得,当点到(轴)距离最大时,的面积最大,面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.10、C【解析】解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.11、B【解析】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可【详解】将函数的图
10、象向左平移个单位,得到,此时与函数的图象重合,则,即,当时,取得最小值为,故选:【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键12、D【解析】利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【详解】由于,所以,即,即,解得或.故选:D【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一
11、组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.14、【解析】,由余弦定理,得,得,所以,所以点睛:本题考查平面向量的综合应用本题中存在垂直关系,所以在线性表示的过程中充分利用垂直关系,得到,所以本题转化为求长度,利用余弦定理和面积公式求解即可15、【解析】作出可行域,将目标函数整理为可视为可行解与的斜率,则由图可知或,分别计算出与,再由不等式的简单性质即可求得答案.【详解】作出满
12、足约束条件的可行域,显然当时,z=0;当时将目标函数整理为可视为可行解与的斜率,则由图可知或显然,联立,所以则或,故或综上所述,故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.16、127【解析】已知条件化简可化为,等式两边同时除以,则有 ,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【详解】由.故答案为:.【点睛】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,难度较易.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)在不等式两边平方化简转化为二次不等式,解此
13、二次不等式即可得出结果;(2)利用绝对值三角不等式可证得成立.【详解】(1),由得,不等式两边平方得,即,解得或.因此,不等式的解集为;(2),由绝对值三角不等式可得.因此,.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用绝对值三角不等式证明不等式,考查推理能力与运算求解能力,属于中等题.18、()见证明;()【解析】()利用等比数列的定义结合得出数列是等比数列()数列是“等比-等差”的类型,利用分组求和即可得出前项和.【详解】解:()当时,故.当时,则 ,数列是首项为,公比为的等比数列.()由()得, , ,.【点睛】()证明数列是等比数列可利用定义法 得出()采用分组求和:把一个数
14、列分成几个可以直接求和的数列19、(1)x2=4y(2).【解析】试题解析:()设点P(x0,),由x2=2py(p0)得,y=,求导y=,因为直线PQ的斜率为1,所以=1且x0-2=0,解得p=2,所以抛物线C1的方程为x2=4y()因为点P处的切线方程为:y-=(x-x0),即2x0x-2py-x02=0, OQ的方程为y=-x根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,由方程组,解得Q(,),所以|PQ|=1+k2|xP-xQ|=点F(0,)到切线PQ的距离是d=,所以S1=,S2=,而由x04=4x02+4p2知,4p2=x04-4x020,得|x0|2,所以=+12
15、+1,当且仅当时取“=”号,即x02=4+2,此时,p=所以的最小值为2+1考点:求抛物线的方程,与抛物线有关的最值问题.20、(1)见解析;(2)【解析】(1)取中点,中点,连接,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)取中点,中点,连接,.设交于,则为的中点,连接.设,则,.由已知,平面,.,平面,平面,平面平面.(2)由(1)及已知可得平面,建立如图所示的空间坐标系,设,则,设平面的法向量为,令得.设平面的法向量为,令得,二面角的余弦值为.【点睛】本小题主要考查面面垂直的证明,
16、考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(1),(2).【解析】(1)利用与的递推关系可以的通项公式;点代入直线方程得,可知数列是等差数列,用公式求解即可.(2)用错位相减法求数列的和.【详解】由可得,两式相减得,又,所以故是首项为1,公比为3的等比数列所以由点在直线上,所以则数列是首项为1,公差为2的等差数列则因为,所以则,两式相减得:所以【点睛】用递推关系求通项公式时注意的取值范围,所求结果要注意检验的情况;由一个等差数列和一个等比数列的积组成的数列求和,常用错位相减法求解.22、(1)证明见解析(2)【解析】(1)根据,求导,令,用导数法求其最小值.设研究在处左正右负,求导,分 ,三种情况讨论求解.【详解】(1)因为,所以,令,则,所以是的增函数,故,即.因为所以,当时,所以函数在上单调递增.若,则若,则所以函数的单调递增区间是,单调递减区间是,所以在处取得极小值,不符合题意,当时,所以函数在上单调递减.若,则若,则所以的单调递减区间是,单调递增区间是,所以在处取得极大值,符合题意.当时,使得,即,但当时,即所以函数在上单调递减,所以,即函数)在上单调递减,不符合题意综上所述,的取值范围是【点睛】本题主要考查导数与函数的单调性和极值,还考查了转化化归的思想和运算求解的能力,属于难题.