《长竹园一中学2023年中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《长竹园一中学2023年中考数学模拟试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1计算2+3的结果是()A1B1C5D62如图,在矩形ABCD中,E是AD边的中点,BEAC,垂足为点F,连接DF,分析下列四个结论:AEFCAB;CF=2AF;DF=DC;tanCAD=其中正确的结论有()A4个B3个C2个D1个3如图,ABCD,FH平分BFG,EFB58,则下列说法错误的是()AEGD
2、58BGFGHCFHG61DFGFH4如图,矩形ABCD中,AB4,BC3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1S2为( )ABCD65已知O1与O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )A相交 B内切 C外离 D内含62018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A18108 B1.8108 C1.8109 D0.1810107如图,在ABC中,点D在BC上,DEAC,DFAB,下
3、列四个判断中不正确的是( )A四边形AEDF是平行四边形B若BAC90,则四边形AEDF是矩形C若AD平分BAC,则四边形AEDF是矩形D若ADBC且ABAC,则四边形AEDF是菱形8五个新篮球的质量(单位:克)分别是+5、3.5、+0.7、2.5、0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数仅从轻重的角度看,最接近标准的篮球的质量是()A2.5B0.6C+0.7D+59如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )A点AB点BC点CD点D10多项式ax24ax12a因式分解正确的是( )Aa(x6)(x+2)Ba(x3)(x+4)Ca(x24x12
4、)Da(x+6)(x2)二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形ABCD中,AB2,点E在AD边上,以E为圆心,EA长为半径的E与BC相切,交CD于点F,连接EF若扇形EAF的面积为,则BC的长是_12分解因式:4x236=_13如图,在RtABC中,C=90,A=30,BC=2,C的半径为1,点P是斜边AB上的点,过点P作C的一条切线PQ(点Q是切点),则线段PQ的最小值为_14A如果一个正多边形的一个外角是45,那么这个正多边形对角线的条数一共有_条B用计算器计算:tan6327_(精确到0.01)15把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积
5、是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程 (列出方程,不要求解方程)16如图,PA、PB是O的切线,A、B为切点,AC是O的直径,P= 40,则BAC= .三、解答题(共8题,共72分)17(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产
6、产品的件数.18(8分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1B 布袋中有三个完全相同的小球,分别标有数字1,1和2小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y)(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=x1上的概率19(8分)在平面直角坐标系中,已知抛物线经过A(3,0),B(0,3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S.求S关于m的函数关系式,并求出S
7、的最大值;(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. 20(8分)如图,已知AC和BD相交于点O,且ABDC,OA=OB求证:OC=OD21(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?22(10分)计算:(2)+23(12分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分
8、学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.24在ABC中,BAC=90,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧
9、作等腰三角形ADE,使DAE=90,连接CE探究:如图,当点D在线段BC上时,证明BC=CE+CD应用:在探究的条件下,若AB=,CD=1,则DCE的周长为 拓展:(1)如图,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为 (2)如图,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据异号两数相加的法则进行计算即可【详解】解:因为-2,3异号,且|-2|3|,所以-2+3=1故选A【点睛】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值2、A【解析】正确只要证明
10、EAC=ACB,ABC=AFE=90即可;正确由ADBC,推出AEFCBF,推出=,由AE=AD=BC,推出=,即CF=2AF;正确只要证明DM垂直平分CF,即可证明;正确设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N四边形ABCD是矩形,ADBC,ABC=90,AD=BC,EAC=ACBBEAC于点F,ABC=AFE=90,AEFCAB,故正确;ADBC,AEFCBF,=AE=AD=BC,=,CF=2AF,故正确;DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NFBEAC于点
11、F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,tanCAD=故正确故选A【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键解题时注意:相似三角形的对应边成比例3、D【解析】根据平行线的性质以及角平分线的定义,即可得到正确的结论【详解】解:,故A选项正确;又故B选项正确;平分,故C选项正确;,故选项错误;故选【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等4、A【解析】根据图形可
12、以求得BF的长,然后根据图形即可求得S1-S2的值【详解】在矩形ABCD中,AB=4,BC=3,F是AB中点,BF=BG=2,S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,S1-S2=43-=,故选A【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答5、A【解析】试题分析:O1和O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5345+3,根据圆心距与半径之间的数量关系可知O1与O2相交故选A考点:圆与圆的位置关系6、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把
13、原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:1800000000=1.8109,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、C【解析】A选项,在ABC中,点D在BC上,DEAC,DFAB,DEAF,DFAE,四边形AEDF是平行四边形;即A正确;B选项,四边形AEDF是平行四边形,BAC=90,四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分BAC”结合四边形AEDF是平行四边形只能证明
14、四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,ADBC”可证明AD平分BAC,从而可通过证EAD=CAD=EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.8、B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,53.52.50.70.6,最接近标准的篮球的质量是-0.6,故选B【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键9、B【解
15、析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小故选B10、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可解:ax24ax12a=a(x24x12)=a(x6)(x+2)故答案为a(x6)(x+2)点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】分析:设AEF=n,由题意,解得n=120,推出AEF=120,在RtEFD中,求出DE即可解决问题详解:设AEF=n,由题意,解得n=120,AEF
16、=120,FED=60,四边形ABCD是矩形,BC=AD,D=90,EFD=10,DE=EF=1,BC=AD=2+1=1,故答案为1 点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12、4(x+3)(x3)【解析】分析:首先提取公因式4,然后再利用平方差公式进行因式分解详解:原式=点睛:本题主要考查的是因式分解,属于基础题型因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式13、 【解析】当PCAB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2CQ2,先求出
17、CP的长,然后由勾股定理即可求得答案【详解】连接CP、CQ;如图所示:PQ是C的切线,CQPQ,CQP=90,根据勾股定理得:PQ2=CP2CQ2,当PCAB时,线段PQ最短在RtACB中,A=30,BC=2,AB=2BC=4,AC=2,CP=,PQ=,PQ的最小值是故答案为:【点睛】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PCAB时,线段PQ最短是关键14、20 5.1 【解析】A、先根据多边形外角和为360且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得【详解】A、根据题意,此正多边形的边数为36045=8,则这个正多边形对
18、角线的条数一共有=20,故答案为20;B、tan63272.6462.0015.1,故答案为5.1【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用15、(x+5)1=4x1【解析】根据等量关系“大圆的面积=4小圆的面积”可以列出方程【详解】解:设小圆的半径为x米,则大圆的半径为(x+5)米,根据题意得:(x+5)1=4x1,故答案为(x+5)1=4x1.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出16、20【解析】根据切线的性质可知PAC90,由切线长定理得PAPB,P40,求出PAB的度数,用PAC
19、PAB得到BAC的度数【详解】解:PA是O的切线,AC是O的直径,PAC90PA,PB是O的切线,PAPBP40,PAB(180P)2(18040)270,BACPACPAB907020故答案为20【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数三、解答题(共8题,共72分)17、(1)y=19x-1(x0且x是整数) (2)6000件【解析】(1)本题的等量关系是:纯利润=产品的出厂单价产品的数量-产品的成本价产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,
20、求出x即可【详解】(1)依题意得:y=80x-60x-0.5x2-1,化简得:y=19x-1,所求的函数关系式为y=19x-1(x0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,这个月该厂生产产品6000件【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解18、 (1)见解析;(1) 【解析】试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可.(1)由题意得11-1(1,-1)(1,-1)-1(1,-1)(1,-1)-2(1,-2)(1,-2)(1)共有6种等可能情况,符合条件的有1种P(
21、点Q在直线y=x1上)=.考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.19、(1) 时,S最大为(1)(1,1)或或或(1,1)【解析】试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式(2)设出M点的坐标,利用S=SAOM+SOBMSAOB即可进行解答;(1)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合,即可得出结论试题解析:解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a0),将A(1,0),B(0,1),C(1,0)三点代入函数解析式得:解得,
22、所以此函数解析式为:(2)M点的横坐标为m,且点M在这条抛物线上,M点的坐标为:(m,),S=SAOM+SOBM-SAOB=1(-)+1(-m)-11=-(m+)2+, 当m=-时,S有最大值为:S=-(1)设P(x,)分两种情况讨论:当OB为边时,根据平行四边形的性质知PBOQ,Q的横坐标的绝对值等于P的横坐标的绝对值,又直线的解析式为y=-x,则Q(x,-x)由PQ=OB,得:|-x-()|=1解得: x=0(不合题意,舍去),-1, ,Q的坐标为(1,1)或或;当BO为对角线时,如图,知A与P应该重合,OP=1四边形PBQO为平行四边形则BQ=OP=1,Q横坐标为1,代入y=x得出Q为(
23、1,1)综上所述:Q的坐标为:(1,1)或或或(1,1)点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解20、证明见解析.【解析】试题分析:首先根据等边对等角可得A=B,再由DCAB,可得D=A,C=B,进而得到C=D,根据等角对等边可得CO=DO试题解析:证明:ABCDAD BCOA=OBABCDOCOD考点:等腰三角形的性质与判定,平行线的性质21、原计划每天种树40棵【解析】设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实
24、际完成的天数比计划少5天为等量关系建立方程求出其解即可【详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得=5,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.22、5- 【解析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得详解:原式=3(2-)-+=6-+=5-点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.23、(1),见解析;(2)125人;(3)【解析】(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数
25、;(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;(3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解【详解】(1)解:(1)n=20-1-3-8-5=3;强化训练前的中位数,强化训练后的平均分为(16+37+88+95+103)=8.3;强化训练后的众数为8,故答案为3;7.5;8.3;8;(2)(人)(3)(3)画树状图为:共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,所以所抽取的两名同学恰好是一男一女的概率P=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能
26、的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率也考查了统计图24、探究:证明见解析;应用:;拓展:(1)BC= CD-CE,(2)BC= CE-CD【解析】试题分析:探究:判断出BAD=CAE,再用SAS即可得出结论;应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;拓展:(1)同探究的方法得出ABDACE,得出BD=CE,即可得出结论;(2)同探究的方法得出ABDACE,得出BD=CE,即可得出结论试题解析:探究:BAC=90,DAE=90,BAC=DAEBAC=BAD+DAC,DAE=CAE+DAC,BAD=CAEAB=AC,AD=AE,ABDACEBD=CEBC=BD+CD,BC=CE+CD应用:在RtABC中,AB=AC=,ABC=ACB=45,BC=2,CD=1,BD=BC-CD=1,由探究知,ABDACE,ACE=ABD=45,DCE=90,在RtBCE中,CD=1,CE=BD=1,根据勾股定理得,DE=,DCE的周长为CD+CE+DE=2+故答案为2+拓展:(1)同探究的方法得,ABDACEBD=CEBC=CD-BD=CD-CE,故答案为BC=CD-CE;(2)同探究的方法得,ABDACEBD=CEBC=BD-CD=CE-CD,故答案为BC=CE-CD