辽宁省沈阳市沈北新区重点名校2023年十校联考最后数学试题含解析.doc

上传人:茅**** 文档编号:88321677 上传时间:2023-04-25 格式:DOC 页数:23 大小:1.25MB
返回 下载 相关 举报
辽宁省沈阳市沈北新区重点名校2023年十校联考最后数学试题含解析.doc_第1页
第1页 / 共23页
辽宁省沈阳市沈北新区重点名校2023年十校联考最后数学试题含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《辽宁省沈阳市沈北新区重点名校2023年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省沈阳市沈北新区重点名校2023年十校联考最后数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,在ABC中,C=90,B=30,AD是ABC的角平分线,DEAB,垂足为点E,DE=1,则BC= ()AB2C3D+22下列二次根式,最简二次根式是()ABCD3如图,在ABC中,AD是BC边的中线,ADC=30,将ADC沿AD折叠,使C点落在C的位置,若BC=4,则BC的长为()A2B2C4D34

2、某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为( )A6,5B6,6C5,5D5,65下列各式中,计算正确的是 ( )ABCD6(2016四川省甘孜州)如图,在55的正方形网格中,每个小正方形的边长都为1,若将AOB绕点O顺时针旋转90得到AOB,则A点运动的路径的长为()AB2C4D87如图,ABC中,AB=AC=15,AD平分BAC,点E为AC的中点,连接DE,若CDE的周长为21,则BC的长为( )A16B14C12D68已知实数a0,则下列事件中是必然事件的是()Aa+30Ba30C3a0Da309已知正

3、多边形的一个外角为36,则该正多边形的边数为( ).A12B10C8D610cos45的值是()ABCD1二、填空题(本大题共6个小题,每小题3分,共18分)11在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_个12不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_13在ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则ABC的面积为_cm11

4、4已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_15计算:()0=_16函数y= 中,自变量x的取值范围是 _三、解答题(共8题,共72分)17(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的

5、学生有多少人?18(8分)已知:如图,梯形ABCD中,ADBC,DEAB,与对角线交于点,且FG=EF.(1)求证:四边形是菱形;(2)联结AE,又知ACED,求证: .19(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示)求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度20(8分)如图,在平面直角坐标系中,直线yx+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线

6、yx+2上一点,直线yx+b过点C求m和b的值;直线yx+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动设点P的运动时间为t秒若点P在线段DA上,且ACP的面积为10,求t的值;是否存在t的值,使ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由21(8分)如图1,已知抛物线y=x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DHx轴于点H,过点A作AEAC交DH的延长线于点E(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物

7、线上的一点,求当CPF的周长最小时,MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的CFP沿直线AE平移得到CFP,将CFP沿CP翻折得到CPF,记在平移过称中,直线FP与x轴交于点K,则是否存在这样的点K,使得FFK为等腰三角形?若存在求出OK的值;若不存在,说明理由22(10分)已知RtABC中,ACB90,CACB4,另有一块等腰直角三角板的直角顶点放在C处,CPCQ2,将三角板CPQ绕点C旋转(保持点P在ABC内部),连接AP、BP、BQ如图1求证:APBQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出

8、旋转过程中EP、EQ、EC之间的数量关系23(12分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B点坐标是 ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度24如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F(1)求反比例函数的解析式;(2)求OEF的

9、面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b的解集参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据RtADE可得AD=2DE=2,根据题意可得ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1考点:角平分线的性质和中垂线的性质2、C【解析】根据最简二次根式的定义逐个判断即可【详解】A,不是最简二次根式,故本选项不符合题意;B,不是最简二次根式,故本选项不符合题意;C是最简二次根式,故本选项符合题意;D,不是最简二次根式,故本选项不符合题意故选C【

10、点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键3、A【解析】连接CC,将ADC沿AD折叠,使C点落在C的位置,ADC=30,ADC=ADC=30,CD=CD,CDC=ADC+ADC=60,DCC是等边三角形,DCC=60,在ABC中,AD是BC边的中线,即BD=CD,CD=BD,DBC=DCB=CDC=30,BCC=DCB+DCC=90,BC=4,BC=BCcosDBC=4=2,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键4、A【解析】根据

11、众数、中位数的定义分别进行解答即可【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选A【点睛】本题考查了众数和中位数的定义用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数5、C【解析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案【详解】A、无法计算,故此选项错误;B、a2a3=a5,故此

12、选项错误;C、a3a2=a,正确;D、(a2b)2=a4b2,故此选项错误故选C【点睛】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键6、B【解析】试题分析:每个小正方形的边长都为1,OA=4,将AOB绕点O顺时针旋转90得到AOB,AOA=90,A点运动的路径的长为:=2故选B考点:弧长的计算;旋转的性质7、C【解析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为ABC中位线,故ABC的周长是CDE的周长的两倍,由此可求出BC的值.【详解】AB=AC=15,AD平分BAC,D为BC中点,点E为AC的中点,DE为ABC中位线,D

13、E=AB,ABC的周长是CDE的周长的两倍,由此可求出BC的值.AB+AC+BC=42,BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.8、B【解析】A、a+30是随机事件,故A错误;B、a30是必然事件,故B正确;C、3a0是不可能事件,故C错误;D、a30是随机事件,故D错误;故选B点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【

14、解析】利用多边形的外角和是360,正多边形的每个外角都是36,即可求出答案【详解】解:3603610,所以这个正多边形是正十边形故选:B【点睛】本题主要考查了多边形的外角和定理是需要识记的内容10、C【解析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45= .故选:C.【点睛】本题考查特殊角的三角函数值.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率

15、为0.3,所以估计这个口袋中黑球的数量为200.3=6(个),则红球大约有20-6=1个,故答案为:1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确12、 【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是 ,故答案是 点睛:此题主要考查了概率的求法,如

16、果一个事件有n种可能,而且这些事件的可能性相同,其中事件 A出现m种结果,那么事件A的概率P(A)= 13、2或2【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2故答案为2或2考点:勾股定理14、2或2【解析】本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.【详解】解: 当点在线段的延长线上时,如图3所示.过点作于,是正方形的对角线,,在

17、中,由勾股定理,得:,在和中,,,当点在线段上时,如图4所示.过作于是正方形的对角线,在中,由勾股定理,得:在和中,,,故答案为或【点睛】本题主要考查了勾股定理和三角形全等的证明.15、-1【解析】本题需要运用零次幂的运算法则、立方根的运算法则进行计算.【详解】由分析可得:()0=121.【点睛】熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.16、x【解析】该函数是分式,分式有意义的条件是分母不等于1,故分母x11,解得x的范围【详解】解:根据分式有意义的条件得:2x+31解得:故答案为【点睛】本题考查了函数自变量取值范围的求法要使得本题函数式子有意义,必须满足分母不等于1三、解

18、答题(共8题,共72分)17、(4)60;(4)作图见试题解析;(4)4【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数试题解析:(4)被调查的学生人数为:4440%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400=4(人)考点:4条形统计图;4用样本估计总体;4扇形统计图18、 (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平

19、行的四边形是平行四边形,得到是平行四边形再由平行线分线段成比例定理得到:, ,即可得到结论;(2)连接,与交于点由菱形的性质得到,进而得到 ,即有,得到,由相似三角形的性质即可得到结论详解:(1) ,四边形是平行四边形,同理 得:,四边形是菱形(2)连接,与交于点四边形是菱形,得 同理又是公共角,点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质灵活运用菱形的判定与性质是解题的关键19、米.【解析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(

20、a0),则据题意得:,解得:,羽毛球飞行的路线所在的抛物线的表达式为:y=x2+x+1,y=(x4)2+,飞行的最高高度为:米【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.20、(1)4,5;(2)7;4或 或或8.【解析】分别令可得b和m的值;根据的面积公式列等式可得t的值;存在,分三种情况:当时,如图1,当时,如图2,当时,如图3,分别求t的值即可【详解】把点代入直线中得:,点,直线过点C,;由题意得:,中,当时,中,当时,的面积为10,则t的值7秒;存在,分三种情况:当时,如图1,过C作于E,即;当时,如图2,;当时,如图3,即;综上,当秒或秒或秒或8秒时

21、,为等腰三角形【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题21、 (1)2 ;(2) ;(3)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得ACOEAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,CP

22、F周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m+m+),则Q(m,m-),根据SMFP=SMQF+SMQP,得出SMFP= -m+m+,根据解析式即可求得,MPF面积的最大值;(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出CFP为等边三角形,边长为,翻折之后形成边长为的菱形CFPF,且FF=4,然后分三种情况讨论求得即可本题解析:(1)对于抛物线y=x2+x+,令x=0,得y=,即C(0,),D(2,),DH=,令y=0,即x2+x

23、+=0,得x1=1,x2=3,A(1,0),B(3,0),AEAC,EHAH,ACOEAH,=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(2,),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,CPF周长=CF+PF+CP=GF+PF+PN最小,直线GN的解析式:y=x;直线AE的解析式:y=x,联立得:F (0,),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,m2+m+),则Q(m, m),(0m2);SMFP=SMQF+SMQP=MQ2=MQ=m2+m+,对称轴为:直线m=2,开口向下,m=时,MPF面

24、积有最大值: ;(3)由(2)可知C(0,),F(0,),P(2,),CF=,CP=,OC=,OA=1,OCA=30,FC=FG,OCA=FGA=30,CFP=60,CFP为等边三角形,边长为,翻折之后形成边长为的菱形CFPF,且FF=4,1)当K F=KF时,如图3,点K在FF的垂直平分线上,所以K与B重合,坐标为(3,0),OK=3; 2)当FF=FK时,如图4,FF=FK=4,FP的解析式为:y=x,在平移过程中,FK与x轴的夹角为30,OAF=30,FK=FAAK=4OK=41或者4+1;3)当FF=FK时,如图5,在平移过程中,FF始终与x轴夹角为60,OAF=30,AFF=90,F

25、F=FK=4,AF=8,AK=12,OK=1,综上所述:OK=3,41,4+1或者1点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.22、(1)证明见解析(2) (3)EP+EQ= EC【解析】(1)由题意可得:ACP=BCQ,即可证ACPBCQ,可得 AP=CQ;作 CHPQ 于 H,由题意可求 PQ=2 ,可得 CH=,根据勾股定理可求AH= ,即可求 AP 的长;作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 O,由题意可证C

26、NP CMQ,可得 CN=CM,QM=PN,即可证 RtCEMRtCEN,EN=EM,CEM=CEN=45,则可求得 EP、EQ、EC 之间的数量关系【详解】解:(1)如图 1 中,ACB=PCQ=90,ACP=BCQ 且 AC=BC,CP=CQACPBCQ(SAS)PA=BQ如图 2 中,作 CHPQ 于 HA、P、Q 共线,PC=2,PQ=2,PC=CQ,CHPQCH=PH= 在 RtACH 中,AH= PA=AHPH= -解:结论:EP+EQ= EC理由:如图 3 中,作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 OACPBCQ,CAO=OBE,AOC=BOE,OEB=

27、ACO=90,M=CNE=MEN=90,MCN=PCQ=90,PCN=QCM,PC=CQ,CNP=M=90,CNPCMQ(AAS),CN=CM,QM=PN,CE=CE,RtCEMRtCEN(HL),EN=EM,CEM=CEN=45EP+EQ=EN+PN+EMMQ=2EN,EC=EN,EP+EQ=EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形23、 (1) 方案1; B(5,0); ;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式(2)把x=3代入抛物线的解析式,即可得到

28、结论试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,抛物线的解析式为:;(2)由题意:把代入,解得:=3.2,水面上涨的高度为3.2m方案2:(1)点B的坐标为(10,0)设抛物线的解析式为:由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,抛物线的解析式为:;(2)由题意:把代入解得:=3.2,水面上涨的高度为3.2m方案3:(1)点B的坐标为(5, ),由题意可以得到抛物线的顶点为(0,0)设抛物线的解析式为:,把点B的坐标(5, ),代入解析式可得:,抛物线的解析式为:;(2)由题意:把代入解得:=

29、,水面上涨的高度为3.2m24、(1)y=;(2);(3)x1【解析】(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据OEF的面积=S矩形BCDOSODESOBFSCEF进行计算;(3)观察函数图象得到当x1时,一次函数图象都在反比例函数图象上方,即k2x+b【详解】(1)四边形DOBC是矩形,且点C的坐标为(1,4),OB=1,OD=4,点A为线段OC的中点,A点坐标为(3,2),k1=32=1,反比例函数解析式为y=;(2)把x=1代入y=得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),OEF的面积=S矩形BCDOSODESOBFSCEF=41411(1)(41)=;(3)由图象得:不等式不等式k2x+b的解集为x1【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁