《陕西省延安市重点中学2022-2023学年高考数学一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省延安市重点中学2022-2023学年高考数学一模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( )A2或B3或C4或D5或2的展开式中,满足的的系数之和为( )ABCD3在很多地铁的车厢里,顶部的扶手
2、是一根漂亮的弯管,如下图所示将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是( )ABCD4在中,则边上的高为( )AB2CD5已知中,则( )A1BCD6已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( )A第一象限B第二象限C第三象限D第四象限7已知,则的最小值为( )ABCD8设,分别是中,所对边的边长,则直线与的位置关系是( )A平行B重合C垂直D相交但不垂直9已知函数,且在上是单调函数,则下列说法正确的是( )ABC函数在上单调递减D函数的图像关于点对称10圆柱被一平面截去
3、一部分所得几何体的三视图如图所示,则该几何体的体积为( ) ABCD11 “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( )ABCD12已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,则的离心率为( )A2BCD二、填空题:本题共4小题,每小题5分,共20分。13若函数,则的值为_.14如图,己知半圆
4、的直径,点是弦(包含端点,)上的动点,点在弧上若是等边三角形,且满足,则的最小值为_.15已知函数为上的奇函数,满足.则不等式的解集为_.16六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有_种(用数字回答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥的底面为直角梯形,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.18(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标
5、方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.19(12分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.20(12分)已知,求的最小值.21(12分)如图,在四棱锥中,平面, 底面是矩形,分别是,的中点.()求证:平面;()设, 求三棱锥的体积.22(10分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是
6、符合题目要求的。1、C【解析】先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.2、B【解析】,有,三种情形,用中的系数乘以中的系数,然后相加可得【详解】当时,的展开式中的系数为当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为故选:B【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键3、B【解析】为弯管,为6
7、个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.4、C【解析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主
8、要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.5、C【解析】以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.6、B【解析】分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【详解】因为时,所以,所以复数在复平面内对应的点位于第二象限.故选:B.【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.7、B【解析】 ,选B8、C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点
9、:直线与直线的位置关系9、B【解析】根据函数,在上是单调函数,确定 ,然后一一验证,A.若,则,由,得,但.B.由,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以 ,即,所以 ,若,则,又因为,即,解得, 而,故A错误.由,不妨令 ,得由,得 或当时,不合题意.当时,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.10、B【解析】三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何
10、体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为. 故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.11、C【解析】先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,
11、6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.12、D【解析】作出图象,取AB中点E,连接EF2,设F1Ax,根据双曲线定义可得x2a,再由勾股定理可得到c27a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1EF2,F1AAEEB,设F1Ax,则由双曲线定义可得AF22a+x,BF1BF23x2ax2a,所以x2a,则EF22a,由勾股定理可得(4a)2+(2a)2(2c)2,所以c27a2,则e故选:D【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题对于圆锥曲线中求离心率的问题,关
12、键是列出含有 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,由函数的解析式求出的值,进而计算可得答案【详解】根据题意,函数,则,则;故答案为:.【点睛】本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力14、1【解析】建系,设,表示出点坐标,则,根据的范围得出答案【详解】解:以为原点建立平面坐标系如图所示:则,设,则,显然当取得最大值4时,取得最小值1故答案为:1【点睛】本题考查了平面向量的数量积运算,坐标运算,属于中档题15、【解析】构造函数,
13、利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.【详解】设,则,设,则.当时,此时函数单调递减;当时,此时函数单调递增.所以,函数在处取得极小值,也是最小值,即,即,所以,函数在上为增函数,函数为上的奇函数,则,则不等式等价于,又,解得.因此,不等式的解集为.故答案为:.【点睛】本题主要考查不等式的求解,构造函数,求函数的导数,利用导数和函数单调性之间的关系是解决本题的关键综合性较强16、135【解析】根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.【详解】根据题意先确定2个人位置不变,共有种选择.再确定4个人坐
14、4个位置,但是不能坐原来的位置,共有种选择,故不同的坐法有.故答案为:.【点睛】本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【详解】(1)连结AC、AE,由已知,四边形ABCE为正方形,则,因为底面,则,由知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,所以,设,则,所以,设,则,所以当,即时,取最大值,从而取最
15、小值,即直线与直线所成的角最小,此时,则,因为,则平面,从而M到平面的距离,所以.【点睛】本题考查线面垂直证线线垂直、异面直线直线所成角计算、换元法求函数最值以及等体积法求三棱锥的体积,考查的内容较多,计算量较大,解决此类问题最关键是准确写出点的坐标,是一道中档题.18、(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方
16、程的互化,属于基础题19、(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【解析】(1)当时,求得其导函数 ,可求得函数的图象在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性; (3)当时,由(2)得的单调区间,以当方程有两个不相等的实数根,不妨设,且有,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.【详解】(1)当时,所以 ,所以函数的图象在处的切线方程为,即;(2)由已知得,令,得,所以当时,当时,所以在上是减函数,在上是增函数;(3)当时,由(2)得在上单调递减,在单调递增,所以,且时,当时
17、,所以当方程有两个不相等的实数根,不妨设,且有,构造函数,则,当时,所以,在上单调递减,且,由 ,在上单调递增, .所以.【点睛】本题考查运用导函数求函数在某点的切线方程,讨论函数的单调性,以及证明不等式,关键在于构造适当的函数,得出其导函数的正负,得出所构造的函数的单调性,属于难度题.20、 【解析】讨论和的情况,然后再分对称轴和区间之间的关系,最后求出最小值【详解】当时,它在上是减函数故函数的最小值为当时,函数的图象思维对称轴方程为当时,函数的最小值为当时,函数的最小值为当时,函数的最小值为综上,【点睛】本题主要考查了二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想
18、,属于中档题。21、()见解析()【解析】()取中点,连,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.()根据三棱锥的体积公式,利用等积法,即可求解.【详解】()取中点,连,由,可得,可得是平行四边形,则,又平面,平面平面,平面,平面,平面平面,是中点,则,而平面平面,而,平面.()根据三棱锥的体积公式,得 .【点睛】本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.22、(1)证明见解析;
19、(2)见解析;(3)存在,1.【解析】(1),求出单调区间,进而求出,即可证明结论;(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.【详解】(1),当时,当时,故.(2)由题知,当时,所以在上单调递减,没有极值;当时,得,当时,;当时,所以在上单调递减,在上单调递增.故在处取得极小值,无极大值.(3)不妨令,设在恒成立,在单调递增,在恒成立,所以,当时,由(2)知,当时,在上单调递减,恒成立;所以不等式在上恒成立,只能.当时,由(1)知在上单调递减,所以,不满足题意.当时,设,因为,所以,即,所以在上单调递增,又,所以时,恒成立,即恒成立,故存在,使得不等式在上恒成立,此时的最小值是1.【点睛】本题考查导数综合应用,涉及到函数的单调性、极值最值、不等式证明,考查分类讨论思想,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.