《通化市重点中学2023届中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《通化市重点中学2023届中考数学考前最后一卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )Aa=2,b=3Ba=-2,b=-3Ca=-2,b=3Da=2,b=-32如图,在ABC中,ABAC,A30,AB的垂直平分线l交AC于点D,则CBD的度数为( )A30B45C50D753如图,在圆O中,直径AB平分弦CD于
2、点E,且CD=4,连接AC,OD,若A与DOB互余,则EB的长是( )A2B4CD24如图,点A、B、C都在O上,若AOC=140,则B的度数是()A70B80C110D1405衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为ABCD6下列等式正确的是()Ax3x2=xBa3a3=aCD(7)4(7)2=727若,则括号内的数是ABC2D88如图,折叠矩形纸片ABCD的一边AD,使
3、点D落在BC边上的点F处,若AB=8,BC=10,则CEF的周长为( ) A12B16C18D249如图,直线ab,ABC的顶点B在直线a上,两边分别交b于A,C两点,若ABC=90,1=40,则2的度数为()A30B40C50D6010已知:二次函数y=ax2+bx+c(a1)的图象如图所示,下列结论中:abc1;b+2a=1;a-b1其中正确的项有( )A2个B3个C4个D5个二、填空题(本大题共6个小题,每小题3分,共18分)11计算:_12如图,AB是O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若C30,O的半径是2,则图形中阴影部分的面积是_13已
4、知关于x的方程x22xk0有两个相等的实数根,则k的值为_14定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则_15如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的读数为,则该直尺的宽度为_16如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程已知:线段a、b,求作:.使得
5、斜边ABb,ACa作法:如图.(1)作射线AP,截取线段ABb;(2)以AB为直径,作O;(3)以点A为圆心,a的长为半径作弧交O于点C;(4)连接AC、CB.即为所求作的直角三角形.请回答:该尺规作图的依据是_.三、解答题(共8题,共72分)17(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和请你用画树状图或列表的方法,求出这两数和为6的概率如果和为奇数,则小明胜;若和为偶数,则小亮胜你认为这个游戏规则对双方公平吗?
6、做出判断,并说明理由18(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元 (1)求A、B两种钢笔每支各多少元? (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案? (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获
7、利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?19(8分)(1)解方程:x24x3=0;(2)解不等式组:20(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、(1)求反比例函数和一次函数的解析式;(2)请连结,并求出的面积;(3)直接写出当时,的解集21(8分)先化简再求值:,其中,.22(10分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合
8、成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值23(12分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,(1)求证:直线为的切线;(2)求证:;(3)若,求的长24在ABC中,AB=AC,BAC=,点P是ABC内一点,且PAC+PCA=,连接PB,试探究PA、PB、PC满足的等量关系(1)当=60时,将ABP绕点A逆时针旋转60得到
9、ACP,连接PP,如图1所示由ABPACP可以证得APP是等边三角形,再由PAC+PCA=30可得APC的大小为 度,进而得到CPP是直角三角形,这样可以得到PA、PB、PC满足的等量关系为 ;(2)如图2,当=120时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为 参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B点睛:此题主要考查了整式的乘法和因式分解的关系,利用
10、它们之间的互逆运算的关系是解题关键.2、B【解析】试题解析:AB=AC,A=30,ABC=ACB=75,AB的垂直平分线交AC于D,AD=BD,A=ABD=30,BDC=60,CBD=1807560=45故选B3、D【解析】连接CO,由直径AB平分弦CD及垂径定理知COB=DOB,则A与COB互余,由圆周角定理知A=30,COE=60,则OCE=30,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,AB平分CD,COB=DOB,ABCD,CE=DE=2A与DOB互余,A+COB=90,又COB=2A,A=30,COE=60,OCE=30,设OE=x,则CO=
11、2x,CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,BO=CO=4,BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.4、C【解析】分析:作对的圆周角APC,如图,利用圆内接四边形的性质得到P=40,然后根据圆周角定理求AOC的度数详解:作对的圆周角APC,如图,P=AOC=140=70P+B=180,B=18070=110,故选:C点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半5、A【解析】根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关
12、系列出方程即可【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:故选:【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系6、C【解析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案【详解】解:A、x3-x2,无法计算,故此选项错误;B、a3a3=1,故此选项错误;C、(-2)2(-2)3=-,正确;D、(-7)4(-7)2=72,故此选项错误;故选C【点睛】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键7、C【解析】根据有理数的减法,减去一个数等于加上这个数的相反数
13、,可得答案【详解】解:,故选:C【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数8、A【解析】解:四边形ABCD为矩形,AD=BC=10,AB=CD=8,矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,AF=AD=10,EF=DE,在RtABF中,BF=6,CF=BC-BF=10-6=4,CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1故选A9、C【解析】依据平行线的性质,可得BAC的度数,再根据三角形内和定理,即可得到2的度数【详解】解:ab,1BAC40,又ABC90,2904050,故选C【点睛】本题考查的是平行线的性质,用到的知识点为
14、:两直线平行,内错角相等10、B【解析】根据二次函数的图象与性质判断即可【详解】由抛物线开口向上知: a1; 抛物线与y轴的负半轴相交知c1; 对称轴在y轴的右侧知:b1;所以:abc1,故错误;对称轴为直线x=-1,,即b=2a,所以b-2a=1.故错误;由抛物线的性质可知,当x=-1时,y有最小值,即a-b+c(),即abm(am+b)(m1),故正确;因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故正确;由图像可得,当x=2时,y1,即: 4a+2b+c1,故正确.故正确选项有,故选B.【点睛
15、】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可【详解】解:12=21,=1,故答案为:1【点睛】本题考查了算术平方根的定义,先把化简是解题的关键12、【解析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用SADES扇形FOE图中阴影部分的面积求出即可【详解】解:连接OE,OF、EF,DE是切线,OEDE,C30,OBOE2,EOC60,OC2OE4,CEOCsin60= 点E是弧BF的中点,EAB
16、DAE30,F,E是半圆弧的三等分点,EOFEOBAOF60,OEAD,DAC60,ADC90,CEAE DE,ADDEtan60= SADE FOE和AEF同底等高,FOE和AEF面积相等,图中阴影部分的面积为:SADES扇形FOE故答案为【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出FOE和AEF面积相等是解题关键13、-3【解析】试题解析:根据题意得:=(2)2-41(-k)=0,即12+4k=0,解得:k=-3,14、1【解析】根据两点间的距离公式可求m的值.【详解】依题意有,解得,故答案为:1【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键15
17、、【解析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有: 解直角即可.【详解】连接OC,OD,OC与AD交于点E, 直尺的宽度: 故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.16、等圆的半径相等,直径所对的圆周角是直角,三角形定义【解析】根据圆周角定理可判断ABC为直角三角形【详解】根据作图得AB为直径,则利用圆周角定理可判断ACB=90,从而得到ABC满足条件故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本
18、几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了圆周角定理三、解答题(共8题,共72分)17、 (1)列表见解析;(2)这个游戏规则对双方不公平【解析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;(2)这个游戏规则对双方不公平理由如下:因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的【点睛】本题考查了列表法求概率注意树状图与列表法可以不
19、重不漏的表示出所有等可能的情况用到的知识点为:概率=所求情况数与总情况数之比18、(1) A种钢笔每只15元 B种钢笔每只20元;(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3) 定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得 ,解得: ,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,42.4z45,z是整数z=43,44,90-z=47,或46;共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔
20、44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a+28a+680=-4(a-)+729,-40,W有最大值,a为正整数,当a=3,或a=4时,W最大,W最大=-4(3-)+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元19、(1),;(2)1x1【解析】试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然后得出不等式组的解试题解析:(1)1x=31x+1=7=7 x2=解得:,(2)解不等式1,得x1 解不等式2,得x1 不等式组的解集是1x1考点:一元二次方程的解法;不等式组20、(1
21、),;(2)4;(3)【解析】(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;(2)依据OB=2,点A的横坐标为-4,即可得到AOB的面积为:24=4;(3)依据数形结合思想,可得当x1时,k1x+b1的解集为:-4x1【详解】解:(1)如图,连接,C与轴,轴相切于点D,且半径为,四边形是正方形,点,把点代入反比例函数中,解得:,反比例函数解析式为:,点在反比例函数上,把代入中,可得,把点和分别代入一次函数中,得出:,解得:,一次函数的表达式为:;(2)如图,连接,点的横坐标为,的面积为:;(3)由,根
22、据图象可知:当时,的解集为:【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标21、8【解析】原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,合并得到最简结果,将x与y的值代入计算即可求出值【详解】原式=,当,时,原式=【点睛】本题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式、单项式乘以多项式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键22、(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)或时,BDM为直角三角形【解析】(1)在中令y=0,即可得到A、B两点的坐标(2)先用待
23、定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90时;BDM=90时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,BM2=,DM2=MBD90, 讨论BMD=90和BDM
24、=90两种情况:当BMD=90时,BM2+ DM2= BD2,即=,解得:,(舍去)当BDM=90时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形23、(1)证明见解析;(2)证明见解析;(3)1【解析】(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;(2)由一对直角相等,一对公共角,得出三角形AOD与三角形O
25、AP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证【详解】(1)连接OB,PB是O的切线,PBO=90OA=OB,BAPO于D,AD=BD,POA=POB又PO=PO,PAOPBO PAO=PBO=90,直线PA为O的切线(2)由(1)可知,=90,即,是直径,是半径,整理得;(3)是中点,是中点,是的中位线,是直角三角形,在中,则,、是半径,在中,由勾股定理得:,即,解得:或(舍去),【点睛】本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键24、(1)150,(1)证明见解析(3) 【解析】(1)
26、根据旋转变换的性质得到PAP为等边三角形,得到PPC90,根据勾股定理解答即可;(1)如图1,作将ABP绕点A逆时针旋转110得到ACP,连接PP,作ADPP于D,根据余弦的定义得到PPPA,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可试题解析:【详解】解:(1)ABPACP,APAP,由旋转变换的性质可知,PAP60,PCPB,PAP为等边三角形,APP60,PACPCA60 30,APC150,PPC90,PP1PC1PC1,PA1PC1PB1,故答案为150,PA1PC1PB1;(1)如图,作,使,连接,过点A作AD于D点,即,ABAC,. , AD,.在Rt中,.,.在Rt中,.;(3)如图1,与(1)的方法类似,作将ABP绕点A逆时针旋转得到ACP,连接PP,作ADPP于D,由旋转变换的性质可知,PAP,PCPB,APP90,PACPCA,APC180,PPC(180)(90)90,PP1PC1PC1,APP90,PDPAcos(90)PAsin,PP1PAsin,4PA1sin1PC1PB1,故答案为4PA1sin1PC1PB1【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键