《辽宁省沈阳市和平区第一二六中学2022-2023学年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省沈阳市和平区第一二六中学2022-2023学年中考猜题数学试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图是本地区一种产品30天的销售图象,图是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润日销售量一件产品的销售利润,下列结论错误的是()A第24天的销售量为200件B第10天销售一件产品的利润是15元C第12天与
2、第30天这两天的日销售利润相等D第27天的日销售利润是875元2如图,已知,用尺规作图作第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )A以点为圆心,长为半径画弧,与第1步所画的弧相交于点B以点为圆心,长为半径画弧,与第1步所画的弧相交于点C以点为圆心,长为半径画弧,与第1步所画的弧相交于点D以点为圆心,长为半径画弧,与第1步所画的弧相交于点3如图,ABC为钝角三角形,将ABC绕点A按逆时针方向旋转120得到ABC,连接BB,若ACBB,则CAB的度数为()A45B60C70D904若a=,则实数a在数轴上对应的点的大致位置是()A点EB点FC点GD点H5如图,矩形
3、ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM4,AB6,则BD的长为( )A4B5C8D106下列计算正确的是ABCD7如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( ) ABCD8如图,已知函数y=与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+0的解集是()Ax3B3x0Cx3或x0Dx09设x1,x2是一元二次方程x22x50的两根,则x12+x22的值为()A6B8C14D1610某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该
4、校七年级有400名女生,则估计800米跑不合格的约有( )A2人B16人C20人D40人二、填空题(本大题共6个小题,每小题3分,共18分)11四张背面完全相同的卡片上分别写有0、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为_12函数y中,自变量x的取值范围是 13如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA3,OB4,D为边OB的中点若E为边OA上的一个动点,当CDE的周长最小时,则点E的坐标_ 14在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同小明发现,摸到白色
5、乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是_15把多项式3x212因式分解的结果是_16如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长_cm三、解答题(共8题,共72分)17(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E(1)求证:DCEBFE;(2)若AB=4,tanADB=,求折叠后重叠部分的面积18(8分)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令
6、m1,连接CA,若ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由19(8分)如图,O是ABC的外接圆,FH是O的切线,切点为F,FHBC,连结AF交BC于E,ABC的平分线BD交AF于D,连结BF(1)证明:AF平分BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长20(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45改为30. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C
7、的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由(说明:的计算结果精确到0.1米,参考数据:1.41,1.73,2.24,2.45)21(8分)如图,在RtABC中,C=90,A=30,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设APQ的面积为S,求
8、S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的值22(10分)如图,点O为RtABC斜边AB上的一点,以OA为半径的O与BC切于点D,与AC交于点E,连接AD.求证:AD平分BAC;若BAC=60,OA=4,求阴影部分的面积(结果保留).23(12分)关于x的一元二次方程mx2(2m3)x+(m1)0有两个实数根求m的取值范围;若m为正整数,求此方程的根24已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N(1)求点D的坐标.(2)求点M的坐标(用
9、含a的代数式表示).(3)当点N在第一象限,且OMB=ONA时,求a的值参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题解析:A、根据图可得第24天的销售量为200件,故正确;B、设当0t20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,z=-x+25,当x=10时,y=-10+25=15,故正确;C、当0t24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,y=t+100,当t=12时,y=150,z=-
10、12+25=13,第12天的日销售利润为;15013=1950(元),第30天的日销售利润为;1505=750(元),7501950,故C错误;D、第30天的日销售利润为;1505=750(元),故正确故选C2、D【解析】根据作一个角等于已知角的作法即可得出结论【详解】解:用尺规作图作AOC=2AOB的第一步是以点O为圆心,以任意长为半径画弧,分别交OA、OB于点E、F,第二步的作图痕迹的作法是以点F为圆心,EF长为半径画弧故选:D【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键3、D【解析】已知ABC绕点A按逆时针方向旋转l20得到ABC,根据旋转的性质可得B
11、AB=CAC=120,AB=AB,根据等腰三角形的性质和三角形的内角和定理可得ABB=(180-120)=30,再由ACBB,可得CAB=ABB=30,所以CAB=CAC-CAB=120-30=90故选D4、C【解析】根据被开方数越大算术平方根越大,可得答案【详解】解:,34,a=,3a4,故选:C【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出34是解题关键5、D【解析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度【详解】解:矩形ABCD的对角线AC,BD相交于点O,BAD=90,点O是线段BD的中点,点M是AB的中点,OM是ABD的中位线,AD=2OM=
12、1在直角ABD中,由勾股定理知:BD=故选:D【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键6、C【解析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误故选:【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键7、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案【详解】解:直线y1=k1x+b1与y2=k
13、2x+b2的交点坐标为(2,4),二元一次方程组的解为故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解8、C【解析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+1的解集【详解】函数y=与函数y=ax2+bx的交点P的纵坐标为1,1=,解得:x=3,P(3,1),故不等式ax2+bx+1的解集是:x3或x1故选C【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标9、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形
14、x12+x22得到(x1+x2)2-2x1x2,然后利用代入计算即可【详解】一元二次方程x2-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1x2= 10、C【解析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值【详解】400人.故选C【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析
15、】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】在0.、这四个实数种,有理数有0.、这3个,抽到有理数的概率为,故答案为【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=12、x0且x1【解析】试题分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-10,解可得答案试题解析:根据题意可得x-10;解得x1;故答案为x1考点: 函数自变量的取值范围;分式有意义的条件13、 (1,0) 【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值
16、为此,作点D关于x轴的对称点D,当点E在线段CD上时的周长最小详解:如图,作点D关于x轴的对称点D,连接CD与x轴交于点E,连接DE.若在边OA上任取点E与点E不重合,连接CE、DE、DE由DE+CE=DE+CECD=DE+CE=DE+CE,可知CDE的周长最小,在矩形OACB中,OA=3,OB=4,D为OB的中点,BC=3,DO=DO=2,DB=6,OEBC, RtDOERtDBC,有 OE=1,点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.14、20【解析】先设出白球的个数,根据白球的频
17、率求出白球的个数,再用总的个数减去白球的个数即可【详解】设黄球的个数为x个,共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,60%,解得x30,布袋中白色球的个数很可能是503020(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.15、3(x+2)(x-2)【解析】因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x212因式分解先提公因式3,再利用平方差公式因式分解.【详解】3x212=3()=316、13【解析】试题解析:因为正方形AECF的面积为50cm2,所以 因为菱形ABCD的面积为120cm2,所以 所以菱形的边长 故答案为1
18、3.三、解答题(共8题,共72分)17、(1)见解析;(2)1【解析】(1)由矩形的性质可知A=C=90,由翻折的性质可知A=F=90,从而得到F=C,依据AAS证明DCEBFE即可;(2)由DCEBFE可知:EB=DE,依据AB=4,tanADB=,即可得到DC,BC的长,然后再RtEDC中利用勾股定理列方程,可求得BE的长,从而可求得重叠部分的面积【详解】解:(1)四边形ABCD是矩形,A=C=90,AB=CD,由折叠可得,F=A,BF=AB,BF=DC,F=C=90,又BEF=DEC,DCEBFE;(2)AB=4,tanADB=,AD=8=BC,CD=4,DCEBFE,BE=DE,设BE
19、=DE=x,则CE=8x,在RtCDE中,CE2+CD2=DE2,(8x)2+42=x2,解得x=5,BE=5,SBDE=BECD=54=1【点睛】本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等18、(1)A(4,0),C(3,3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,4);【解析】方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;(2) 先用m表示出P, A C三点的坐标,分别讨论APC=,
20、ACP=,PAC=三种情况, 利用勾股定理即可求得m的值;(3) 设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,可得RtFNPRtPBC,NP:NF=BC:BP求得直线PE的解析式,后利用PEC是以P为直角顶点的等腰直角三角形求得E点坐标.方法二:(1)同方法一.(2) 由ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标【详解】方法一:解:(1)若m=2,抛物线y=x22mx=x24x,对称轴x=2,令y=0,则x24x=0,解得x=0,x=4,A(4,0),P(1
21、,2),令x=1,则y=3,B(1,3),C(3,3)(2)抛物线y=x22mx(m1),A(2m,0)对称轴x=m,P(1,m)把x=1代入抛物线y=x22mx,则y=12m,B(1,12m),C(2m1,12m),PA2=(m)2+(2m1)2=5m24m+1,PC2=(2m2)2+(1m)2=5m210m+5,AC2=1+(12m)2=24m+4m2,ACP为直角三角形,当ACP=90时,PA2=PC2+AC2,即5m24m+1=5m210m+5+24m+4m2,整理得:4m210m+6=0,解得:m=,m=1(舍去),当APC=90时,PA2+PC2=AC2,即5m24m+1+5m21
22、0m+5=24m+4m2,整理得:6m210m+4=0,解得:m=,m=1,和1都不符合m1,故m=(3)设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,FPN=PCB,PNF=CBP=90,RtFNPRtPBC,NP:NF=BC:BP,即=,y=2x2m,直线PE的解析式为y=2x2m令y=0,则x=1+,E(1+m,0),PE2=(m)2+(m)2=,=5m210m+5,解得:m=2,m=,E(2,0)或E(,0),在x轴上存在E点,使得PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=2m,E(0,2m)PE2=(2)2+12=55m210
23、m+5=5,解得m=2,m=0(舍去),E(0,4)y轴上存在点E,使得PEC是以P为直角顶点的等腰直角三角形,此时E(0,4),在坐标轴上是存在点E,使得PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,4);方法二:(1)略(2)P(1,m),B(1,12m),对称轴x=m,C(2m1,12m),A(2m,0),ACP为直角三角形,ACAP,ACCP,APCP,ACAP,KACKAP=1,且m1,m=1(舍)ACCP,KACKCP=1,且m1,=1,m=,APCP,KAPKCP=1,且m1,=1,m=(舍)(3)P(1,m),C(2m1,12m),KCP=,P
24、EC是以P为直角顶点的等腰直角三角形,PEPC,KPEKCP=1,KPE=2,P(1,m),lPE:y=2x2m,点E在坐标轴上,当点E在x轴上时,E(,0)且PE=PC,(1)2+(m)2=(2m11)2+(12m+m)2,m2=5(m1)2,m1=2,m2=,E1(2,0),E2(,0),当点E在y轴上时,E(0,2m)且PE=PC,(10)2+(m+2+m)2=(2m11)2+(12m+m)2,1=(m1)2,m1=2,m2=0(舍),E(0,4),综上所述,(2,0)或(,0)或(0,4)【点睛】本题主要考查二次函数的图象与性质. 扩展:设坐标系中两点坐标分别为点A(), 点B(),
25、则线段AB的长度为:AB=.设平面内直线AB的解析式为:,直线CD的解析式为:(1)若AB/CD,则有:;(2)若ABCD,则有:.19、【小题1】 见解析 【小题2】 见解析 【小题3】 【解析】证明:(1)连接OFFH切O于点FOFFH 1分BC | | FHOFBC 2分BF=CF 3分BAF=CAF 即AF平分BAC4分(2) CAF=CBF又CAF=BAFCBF=BAF 6分BD平分ABCABD=CBDBAF+ABD=CBF+CBD即FBD=FDB 7分BF=DF 8分(3) BFE=AFB FBE=FABBEFABF 9分即BF2=EFAF 10分EF=4 DE=3 BF=DF =
26、4+3=7 AF=AD+7即4(AD+7)=49 解得AD=20、(1)5.6(2)货物MNQP应挪走,理由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45=4在RtACD中,ACD=30AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45=4 在RtACD中,CD=ACcos30= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走21、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解
27、析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G,则AG=GQ,列方程求解;当P在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30,AB=8,BC=AB=4,AC=,由题意得:CQ=t,A
28、Q=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30,cos30=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30,cos30=,t=;综上所述,当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在AB边上时,即0t1,如图4,作PGAC于G,A=30,AP=8t,AGP=90,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)
29、=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30,AP=8t,AGP=90,PG=4t,AG=4t,由AQ=2AG得:4t=8t,t=,当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理得:CQ2+CP2=PQ2,t=或(舍),综上所述,t的值为或点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适
30、的方程求解.22、(1)见解析;(2)【解析】试题分析:(1)连接OD,则由已知易证ODAC,从而可得CAD=ODA,结合ODA=OAD,即可得到CAD=OAD,从而得到AD平分BAC;(2)连接OE、DE,由已知易证AOE是等边三角形,由此可得ADE=AOE=30,由AD平分BAC可得OAD=30,从而可得ADE=OAD,由此可得DEAO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.BC是O的切线,D为切点,ODBC. 又ACBC,ODAC,ADO=CAD.又OD=OA,ADO=OAD,CAD=OAD,即AD平分BAC. (2)连接O
31、E,ED.BAC=60,OE=OA,OAE为等边三角形,AOE=60,ADE=30. 又,ADE=OAD,EDAO, SAEDSOED,阴影部分的面积 = S扇形ODE = .23、(1)且;(2),【解析】(1)根据一元二次方程的定义和判别式的意义得到m0且0,然后求出两个不等式的公共部分即可;(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程【详解】(1)解得且(2)为正整数,原方程为解得,【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.24、(1)D(2,2);(2);(3)【解析】(
32、1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AEOD,可证AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tanOMB=tanONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,A点的坐标为(0,2)顶点B的坐标为:(1,2-a),对称轴为x= 1,点A与点D
33、关于对称轴对称D点的坐标为:(2,2)(2)设直线BD的解析式为:y=kx+b把B(1,2-a)D(2,2)代入得: ,解得:直线BD的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=M点的坐标为:(3)由D(2,2)可得:直线OD解析式为:y=x设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得: 解得:直线AB的解析式为y= -ax+2联立成方程组: ,解得:N点的坐标为:()ON=()过A点作AEOD于E点,则AOE为等腰直角三角形.OA=2OE=AE=,EN=ON-OE=()-=)M,C(1,0), B(1,2-a)MC=,BE=2-aOMB=ONAtanOMB=tanONA,即解得:a=或抛物线开口向下,故a0, a=舍去,【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.