《重庆八中学、九十五中学等校2023届中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《重庆八中学、九十五中学等校2023届中考数学全真模拟试题含解析.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果菱形的一边长是8,那么它的周长是()A16B32C16D322二次函数ya(xm)2n的图象如图,则一次函数ymx+n的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限3二次函数y=ax2+bx+c(a0)的图象如图所示,下列说法:2a+b=0,当1x3时,y0;3a+c=0;若(x1,y1)(x2、y2)在函数图象上,当0x1x2时,y1y2,其中正确的是()ABCD4已知:如图,在扇形中,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕
3、交于点,则弧的长为( )ABCD5图1和图2中所有的正方形都全等,将图1的正方形放在图2中的某一位置,所组成的图形不能围成正方体的位置是()ABCD6已知圆锥的侧面积为10cm2,侧面展开图的圆心角为36,则该圆锥的母线长为()A100cmBcmC10cmDcm7下列各式正确的是()A(2018)=2018B|2018|=2018C20180=0D20181=20188若在同一直角坐标系中,正比例函数yk1x与反比例函数y的图象无交点,则有()Ak1k20Bk1k20Ck1k20Dk1k209已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个随机地从袋中摸出
4、一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )A20B30C40D5010对于反比例函数y=,下列说法不正确的是()A图象分布在第二、四象限B当x0时,y随x的增大而增大C图象经过点(1,2)D若点A(x1,y1),B(x2,y2)都在图象上,且x1x2,则y1y211矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH若BC=EF=2,CD=CE=1,则GH=()A1BCD12在平面直角坐标系中,函数的图象经过( )A第一、二、三象限B第一、二、四象限
5、C第一、三、四象限D第二、三、四象限二、填空题:(本大题共6个小题,每小题4分,共24分)13某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 _元。14在RtABC中,C90,AB2,BC,则sin_15如图,在矩形ABCD中,AB=,E是BC的中点,AEBD于点F,则CF的长是_162017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为_17如图,ABC中,ACB=90,ABC=25,以点C为旋转中心顺时针旋转后得到ABC,且点A在AB上,则旋转角为_. 18规定:x表示不大于x的最大整数,(x)表示
6、不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛
7、物线于点C(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若PAC为直角三角形,直接写出此时点P的坐标20(6分)如图,AD、BC相交于点O,ADBC,CD90求证:ACBBDA;若ABC36,求CAO度数21(6分)如图,在ABC中,ABAC,AE是BAC的平分线,ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F(1)求证:AE为O的切线;(2)当BC=4,AC=6时,求O的半径;(3)在(2)的条件下,求线段BG的长22(8分)计算23(8分)已知顶点为A的抛物线ya(x)22经过点B(,2),点C(
8、,2)(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPMMAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN,若点N落在x轴上,请直接写出Q点的坐标24(10分) 先化简,再求值: ,其中x是满足不等式(x1)的非负整数解25(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助
9、”可以让主持人去掉其中一题的一个错误选项)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率从概率的角度分析,你建议小明在第几题使用“求助”(直接写出答案)26(12分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在
10、RtABC中,C=90,AC=BC=6cm,D是线段AB上一动点,射线DEBC于点E,EDF=60,射线DF与射线AC交于点F设B,E两点间的距离为xcm,E,F两点间的距离为ycm(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.34.03.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当DEF为等边三角形时,BE的长度约为 cm27(12分)已知:如图,在四边形ABCD中,ABCD,对角线AC、BD交于点E,点F在边A
11、B上,连接CF交线段BE于点G,CG2=GEGD求证:ACF=ABD;连接EF,求证:EFCG=EGCB参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据菱形的四边相等,可得周长【详解】菱形的四边相等菱形的周长=48=32故选B【点睛】本题考查了菱形的性质,并灵活掌握及运用菱形的性质2、A【解析】由抛物线的顶点坐标在第四象限可得出m0,n0,再利用一次函数图象与系数的关系,即可得出一次函数ymx+n的图象经过第一、二、三象限【详解】解:观察函数图象,可知:m0,n0,一次函数ymx+n的图象经过第一、二、三象限故选
12、A【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k0,b0ykx+b的图象在一、二、三象限”是解题的关键3、B【解析】函数图象的对称轴为:x=-=1,b=2a,即2a+b=0,正确;由图象可知,当1x3时,y0,错误;由图象可知,当x=1时,y=0,ab+c=0,b=2a,3a+c=0,正确;抛物线的对称轴为x=1,开口方向向上,若(x1,y1)、(x2,y2)在函数图象上,当1x1x2时,y1y2;当x1x21时,y1y2;故错误;故选B点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据
13、对称轴及抛物线与x轴交点情况进行推理4、D【解析】如图,连接OD根据折叠的性质、圆的性质推知ODB是等边三角形,则易求AOD=110-DOB=50;然后由弧长公式弧长的公式 来求 的长【详解】解:如图,连接OD解:如图,连接OD根据折叠的性质知,OB=DB又OD=OB,OD=OB=DB,即ODB是等边三角形,DOB=60AOB=110,AOD=AOB-DOB=50,的长为 =5故选D【点睛】本题考查了弧长的计算,翻折变换(折叠问题)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等所以由折叠的性质推知ODB是等边三角形是解答此题的关键之处5、A【解析】
14、由平面图形的折叠及正方体的表面展开图的特点解题【详解】将图1的正方形放在图2中的的位置出现重叠的面,所以不能围成正方体,故选A【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形注意:只要有“田”字格的展开图都不是正方体的表面展开图6、C【解析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长【详解】设母线长为R,则圆锥的侧面积=10,R=10cm,故选C【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.7、A【解析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答【详解】选项A,(2018)=
15、2018,故选项A正确;选项B,|2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,20181= ,故选项D错误故选A【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.8、D【解析】当k1,k2同号时,正比例函数yk1x与反比例函数y的图象有交点;当k1,k2异号时,正比例函数yk1x与反比例函数y的图象无交点,即可得当k1k20时,正比例函数yk1x与反比例函数y的图象无交点,故选D.9、A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约
16、为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得: ,计算得出:n=20,故选A.点睛:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.10、D【解析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】A. k=20,它的图象在第二、四象限,故本选项正确;B. k=20时,y随x的增大而增大,故本选项正确;C.,点(1,2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x10 x2,则y2y1,故本选项错误.故选:D.【点睛】考查了反比例函数的图象与性质,掌握反比例函数的
17、性质是解题的关键.11、C【解析】分析:延长GH交AD于点P,先证APHFGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案详解:如图,延长GH交AD于点P,四边形ABCD和四边形CEFG都是矩形,ADC=ADG=CGF=90,AD=BC=2、GF=CE=1,ADGF,GFH=PAH,又H是AF的中点,AH=FH,在APH和FGH中,APHFGH(ASA),AP=GF=1,GH=PH=PG,PD=ADAP=1,CG=2、CD=1,DG=1,则GH=PG=,故选:C点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点12、
18、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b当k0,bO时,图象过一、二、三象限,据此作答即可【详解】一次函数y=3x+1的k=30,b=10,图象过第一、二、三象限,故选A【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.二、填空题:(本大题共6个小题,每小题4分,共24分)13、500【解析】设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.【详解】解:设该品牌时装的进价为x元,根据题意得:100090%-x=80%x,解得:x=500,则该品牌时装的进价为500元.故答案为:500.【点睛】本题考查了一元一次
19、方程的应用,找出题中的等量关系是解本题的关键.14、【解析】根据A的正弦求出A60,再根据30的正弦值求解即可【详解】解:,A60,故答案为【点睛】本题考查了特殊角的三角函数值,熟记30、45、60角的三角函数值是解题的关键15、 【解析】试题解析:四边形ABCD是矩形, AEBD, ABEADB, E是BC的中点, 过F作FGBC于G, 故答案为16、1752【解析】试题解析:175 000=1752考点:科学计数法-表示较大的数17、50度【解析】由将ACB绕点C顺时针旋转得到ABC,即可得ACBABC,则可得A=BAC,AAC是等腰三角形,又由ACB中,ACB=90,ABC=25,即可求
20、得A、BAB的度数,即可求得ACB的度数,继而求得BCB的度数【详解】将ACB绕点C顺时针旋转得到,ACB,A=BAC,AC=CA,BAC=CAA,ACB中,ACB=90,ABC=25,BAC=90ABC=65,BAC=CAA=65,BAB=1806565=50,ACB=180255065=40,BCB=9040=50.故答案为50.【点睛】此题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用18、【解析】试题解析:当x=1.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x
21、+(x)+x)=1.1+(1.1)+1.1)=(3)+(1)+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=41+31+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点
22、,故错误,故答案为考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(4,6);y=1x18x+6(1);(3)点P的坐标为(3,5)或()【解析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值(1)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出
23、PC的最大值(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.【详解】解:(1)B(4,m)在直线y=x+1上,m=4+1=6,B(4,6),故答案为(4,6);A(,),B(4,6)在抛物线y=ax1+bx+6上,解得,抛物线的解析式为y=1x18x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n18n+6),PC=(n+1)(1n18n+6),=1n1+9n4,=1(n)1+,PC0,当n=时,线段PC最大且为(3)
24、PAC为直角三角形,i)若点P为直角顶点,则APC=90由题意易知,PCy轴,APC=45,因此这种情形不存在;ii)若点A为直角顶点,则PAC=90如图1,过点A(,)作ANx轴于点N,则ON=,AN=过点A作AM直线AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,MN=AN=,OM=ON+MN=+=3,M(3,0)设直线AM的解析式为:y=kx+b,则:,解得,直线AM的解析式为:y=x+3 又抛物线的解析式为:y=1x18x+6 联立式,解得:或(与点A重合,舍去),C(3,0),即点C、M点重合当x=3时,y=x+1=5,P1(3,5);iii)若点C为直角顶点,则ACP=9
25、0y=1x18x+6=1(x1)11,抛物线的对称轴为直线x=1如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,)当x=时,y=x+1=P1(,)点P1(3,5)、P1(,)均在线段AB上,综上所述,PAC为直角三角形时,点P的坐标为(3,5)或(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.20、(1)证明见解析(2)18【解析】(1)根据HL证明RtABCRtBAD即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可【详解】(1)证明:DC90,ABC和BAD都是Rt,在RtABC和RtBAD中,RtABCRtBAD
26、(HL);(2)RtABCRtBAD,ABCBAD36,C90,BAC54,CAOCABBAD18【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”21、(1)证明见解析;(2);(3)1. 【解析】(1)连接OM,如图1,先证明OMBC,再根据等腰三角形的性质判断AEBC,则OMAE,然后根据切线的判定定理得到AE为O的切线;(2)设O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明AOMABE,则利用相似比得到,然后解关于r的方程即可;(3)作OHBE于H,如图,易得四边形OHEM为矩形,则HE=OM=,
27、所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1【详解】解:(1)证明:连接OM,如图1,BM是ABC的平分线,OBM=CBM,OB=OM,OBM=OMB,CBM=OMB,OMBC,AB=AC,AE是BAC的平分线,AEBC,OMAE,AE为O的切线;(2)解:设O的半径为r,AB=AC=6,AE是BAC的平分线,BE=CE=BC=2,OMBE,AOMABE,即,解得r=,即设O的半径为;(3)解:作OHBE于H,如图,OMEM,MEBE,四边形OHEM为矩形,HE=OM=,BH=BEHE=2=,OHBG,BH=HG=,BG=2BH=122、 【解析】先把括号内通分,再把除
28、法运算化为乘法运算,然后把分子分母因式分解后约分即可【详解】原式=,=,=,=.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式23、 (1) y(x)22;(2)POE的面积为或;(3)点Q的坐标为(,)或(,2)或(,2)【解析】(1)将点B坐标代入解析式求得a的值即可得;(2)由OPM=MAF知OPAF,据此证OPEFAE得=,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上
29、运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得【详解】解:(1)把点B(,2)代入ya(x)22,解得a1,抛物线的表达式为y(x)22,(2)由y(x)22知A(,2),设直线AB表达式为ykxb,代入点A,B的坐标得,解得,直线AB的表达式为y2x1,易求E(0,1),F(0,),M(,0),若OPMMAF,OPAF,OPEFAE,OPFA ,设点P(t,2t1),则,解得t1,t2,由对称性知,当t1时,也满足OPMMAF,t1,t2都满足条件,POE的面积OE|t|,POE的面积为或;(3)如图,若点Q在AB上运动,过N作直线RSy轴,交QR于点R,交NE
30、的延长线于点S,设Q(a,2a1),则NEa,QN2a.由翻折知QNQN2a,NENEa,由QNEN90易知QRNNSE,即=2,QR2,ES ,由NEESNSQR可得a2,解得a,Q(,),如图,若点Q在BC上运动,且Q在y轴左侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)2
31、12a2,解得a,Q(,2)综上,点Q的坐标为(,)或(,2)或(,2)【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点24、- 【解析】【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x的值代入化简后的结果进行计算即可.【详解】原式=,=,=,(x1),x11,x0,非负整数解为0,x=0,当x=0时,原式=-.【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.25、(1);(2);(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公
32、式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在第一题使用“求助”理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=,因为,所以建议小明在第一题使用“求助”【点睛】本题
33、考查的是概率,熟练掌握树状图法和概率公式是解题的关键.26、(1)见解析;(1)3.5;(3)见解析; (4)3.1【解析】根据题意作图测量即可【详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当DEF为等边三角形是,EF=DE,由B=45,射线DEBC于点E,则BE=EF即y=x所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1【点睛】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究27、(1)证明见解析;(2)证明见解析【解析】试题分析:(1)先根据CG2=GEGD得出,再由CGD=EGC可知GCDGEC,GDC=GCE根据ABCD得出ABD=BDC,故可得出结论;(2)先根据ABD=ACF,BGF=CGE得出BGFCGE,故再由FGE=BGC得出FGEBGC,进而可得出结论试题解析:(1)CG2=GEGD,又CGD=EGC,GCDGEC,GDC=GCEABCD,ABD=BDC,ACF=ABD(2)ABD=ACF,BGF=CGE,BGFCGE,又FGE=BGC,FGEBGC,FECG=EGCB考点:相似三角形的判定与性质