福建省莆田市哲理中学2023年中考数学最后冲刺浓缩精华卷含解析.doc

上传人:茅**** 文档编号:88320660 上传时间:2023-04-25 格式:DOC 页数:17 大小:854.50KB
返回 下载 相关 举报
福建省莆田市哲理中学2023年中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共17页
福建省莆田市哲理中学2023年中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《福建省莆田市哲理中学2023年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省莆田市哲理中学2023年中考数学最后冲刺浓缩精华卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列各数中最小的是( )A0B1CD2二次函数y=ax1+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c3b;(3)7a3b+1c0;(4)若点A(3,y1)、点B(,y1)

2、、点C(7,y3)在该函数图象上,则y1y3y1;(5)若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x115x1其中正确的结论有()A1个B3个C4个D5个3通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A8B8C12D124一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )A第一象限B第二象限C第三象限D第四象限5用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A4cmB8cmC(a+4)cmD(a+8)cm6如图,ABCD,DEBE,BF、DF分别

3、为ABE、CDE的角平分线,则BFD()A110B120C125D1357下列计算结果为a6的是()Aa2a3 Ba12a2 C(a2)3 D(a2)38在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A中位数不变,方差不变B中位数变大,方差不变C中位数变小,方差变小D中位数不变,方差变小9下面说法正确的个数有()如果三角形三个内角的比是123,那么这个三角形是直角三角形;如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;如果A=B=C,那么ABC是直角三

4、角形;若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;在ABC中,若AB=C,则此三角形是直角三角形.A3个 B4个 C5个 D6个10如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量)某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_立方米12某校九年级

5、(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是_岁13如图所示,在平面直角坐标系中,已知反比例函数y=(x0)的图象和菱形OABC,且OB=4,tanBOC=,若将菱形向右平移,菱形的两个顶点B、C恰好同时落在反比例函数的图象上,则反比例函数的解析式是_.14图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙)图乙种,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为_cm15数学家吴文俊院士非常重视古代数学家贾宪提出的“从

6、长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_16已知二次函数yax2bxc(a0)中,函数值y与自变量x的部分对应值如下表:x54321y32565则关于x的一元二次方程ax2bxc2的根是_三、解答题(共8题,共72分)17(8分)用你发现的规律解答下列问题计算 探究 (用含有的式子表示)若的值为,求的值18(8分)如图1,在圆中,垂直于弦,为垂足,作,与的延长线交于.(1)求证:是圆的切线;(2)如图2,延长,交圆于点,点是劣弧的中点,求的长 .19(8分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换

7、管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径20(8分)解方程(1);(2)21(8分)如图,一次函数y=x2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C(1)求二次函数的关系式及点C的坐标;(2)如图,若点P是直线AB上方的抛物线上一点,过点P作PDx轴交AB于点D,PEy轴交AB于点E,求PD+PE的最大值;(3)如图,若点M在抛物线的对称轴上,且AMB=ACB,求出所有满足条件的点M的坐标22(10分)如图,在RtABC中,AB

8、C=90o,AB是O的直径,O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,A=PDB(1)求证:PD是O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图,点M是弧AB的中点,连结DM,交AB于点N若tanA=,求的值23(12分)如图,在矩形ABCD中,对角线AC,BD相交于点O(1)画出AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论24如图,在ABC中,点D,E分别在边AB,AC上,AED=B,射线AG分别交线段DE,BC于点F,G,且求证:ADF

9、ACG;若,求的值 参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断【详解】01则最小的数是故选:D【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键2、B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y0,可得9a+3b+c0,可得9a+c-3c,故(1)正确;因为抛物线与x

10、轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a0,因此7a3b+1c0,故(3)不正确;根据图像可知当x1时,y随x增大而增大,当x1时,y随x增大而减小,可知若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1=y3y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x11x1,故(5)正确正确的共有3个.故选B.点睛:本题考查了二次函数

11、图象与系数的关系:二次函数y=ax1+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b14ac0时,抛物线与x轴有1个交点;=b14ac=0时,抛物线与x轴有1个交点;=b14ac0时,抛物线与x轴没有交点3、D【解析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值【详解】251

12、(2)=1,18(3)4=20,4(7)5(3)=13,y=036(2)=1故选D【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键4、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k0,又满足kb0,由此即可得出答案【详解】y随x的增大而减小,一次函数y=kx+b单调递减,k0,kb0,直线经过第二、一、四象限,不经过第三象限,故选C【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k0,k、b是常数)的图象和性质是解题的关键.5、B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案【详

13、解】原正方形的周长为acm,原正方形的边长为cm,将它按图的方式向外等距扩1cm,新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8a=8cm,故选B【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式6、D【解析】如图所示,过E作EGABABCD,EGCD,ABE+BEG=180,CDE+DEG=180,ABE+BED+CDE=360又DEBE,BF,DF分别为ABE,CDE的角平分线,FBE+FDE=(ABE+CDE)=(36090)=135,BFD=360FBEFDEBED=36013590=135故选D【

14、点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补解决问题的关键是作平行线7、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【详解】A、a2a3=a5,此选项不符合题意;B、a12a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则8、D【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断【详解】原数据的中位数是=3,平均数为=3,方

15、差为(1-3)2+(2-3)2+(4-3)2+(5-3)2=;新数据的中位数为3,平均数为=3,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2;所以新数据与原数据相比中位数不变,方差变小,故选:D【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义9、C【解析】试题分析:三角形三个内角的比是1:2:3,设三角形的三个内角分别为x,2x,3x,x+2x+3x=180,解得x=30,3x=330=90,此三角形是直角三角形,故本小题正确;三角形的一个外角与它相邻的一个内角的和是180,若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故

16、本小题正确;直角三角形的三条高的交点恰好是三角形的一个顶点,若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;A=B=C,设A=B=x,则C=2x,x+x+2x=180,解得x=45,2x=245=90,此三角形是直角三角形,故本小题正确;三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,三角形一个内角也等于另外两个内角的和,这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,有一个内角一定是90,故这个三角形是直角三角形,故本小题正确;三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内

17、角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,有一个内角一定是90,故这个三角形是直角三角形,故本小题正确故选D考点:1.三角形内角和定理;2.三角形的外角性质10、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)

18、2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、31【解析】因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:60050=30 000,用科学记数法表示为31立方米故答案为3112、1【解析】根据中位数的定义找出第20和21个数的平均数,即可得出答案【详解】解:该班有40名同学,这个班同学年龄的中位数是第20和21个数的平均数14岁的有1人,1岁的有21人,这个班

19、同学年龄的中位数是1岁【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键13、【解析】解:连接AC,交y轴于D四边形形OABC是菱形,ACOB,OD=BD,AD=CDOB=4,tanBOC=,OD=2,CD=1,A(1,2),B(0,4),C(1,2)设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2)B、C落在反比例函数的图象上,k=4x=2(1+x),解得:x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=14=4,即B、C落在反比例函数的图象上,菱形的平移距离是

20、1,反比例函数的解析式是y=故答案为y=点睛:本题考查了菱形的性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力14、【解析】试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:4=.考点:菱形的性质.15、1【解析】根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得SEBMF=SFGDN,得SFGDN.【详解】SEBMF=SFGDN,SEBMF=1,SFGDN=1.【点睛】本题考查面积的求解,解题的关键是读懂题意.16、x1=-4

21、,x1=2【解析】解:x=3,x=1的函数值都是5,相等,二次函数的对称轴为直线x=1x=4时,y=1,x=2时,y=1,方程ax1+bx+c=3的解是x1=4,x1=2故答案为x1=4,x1=2点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键三、解答题(共8题,共72分)17、解:(1);(2);(3)n=17.【解析】(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.【详解】(1)原式=1+=1=.故答案

22、为; (2)原式=1+=1=故答案为; (3) += (1+)=(1)=解得:n=17.考点:规律题.18、(1)详见解析;(2)【解析】(1)连接OA,利用切线的判定证明即可;(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可【详解】解:(1)如图,连结OA,OA=OB,OCAB,AOC=BOC,又BAD=BOC,BAD=AOCAOC+OAC=90,BAD+OAC=90,OAAD,即:直线AD是O的切线;(2)分别连结OP、PE、AE,OP交AE于F点,BE是直径,EAB=90,OCAE,OB=,BE=13AB=5,在直角ABE中,AE=12,EF=6,FP=OP-OF=

23、-=4在直角PEF中,FP=4,EF=6,PE2=16+36=52,在直角PEB中,BE=13,PB2=BE2-PE2,PB=3【点睛】本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键19、这个圆形截面的半径为10cm.【解析】分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算解答:解:如图,OEAB交AB于点D,则DE=4,AB=16,AD=8,设半径为R,OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm20、(1),;(2),【解析】(1)利用公式法求解可得;(2)利用因式分解法求解可得【详解】(1)解:,;

24、(2)解:原方程化为:,因式分解得:,整理得:,或,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键21、(1)二次函数的关系式为y;C(1,0);(2)当m2时,PDPE有最大值3;(3)点M的坐标为(,)或(,)【解析】(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;(2)先证明PDEOAB,得到PD2PE设P(m,),则E(m,),PDPE3PE,然后配方即可得到结论(3)分两种情况讨论:当点M在在直线AB上方时,则点M在AB

25、C的外接圆上,如图1求出圆心O1的坐标和半径,利用MO1=半径即可得到结论当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2求出点O2的坐标,算出DM的长,即可得到结论【详解】解:(1)令y0,得:x4,A(4,0)令x0,得:y2,B(0,2)二次函数y的图像经过A、B两点,解得:,二次函数的关系式为y令y0,解得:x1或x4,C(1,0)(2)PDx轴,PEy轴,PDEOAB,PEDOBA,PDEOAB2,PD2PE设P(m,),则E(m,)PDPE3PE3()()0m4,当m2时,PDPE有最大值3(3)当点M在在直线AB上方时,则点M在ABC的外接圆上,如图1ABC的外接圆O

26、1的圆心在对称轴上,设圆心O1的坐标为(,t),解得:t2,圆心O1的坐标为(,2),半径为设M(,y)MO1=,解得:y=,点M的坐标为()当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2AO1O1B,O1ABO1BAO1Bx轴,O1BAOAB,O1ABOAB,O2在x轴上,点O2的坐标为 (,0),O2D1,DM,点M的坐标为(,)综上所述:点M的坐标为(,)或(,)点睛:本题是二次函数的综合题考查了求二次函数的解析式,求二次函数的最值,圆的有关性质难度比较大,解答第(3)问的关键是求出ABC外接圆的圆心坐标22、(1)见解析;(2);(3). 【解析】(1)连结OD;由AB是

27、O的直径,得到ADB=90,根据等腰三角形的性质得到ADO=A,BDO=ABD;得到PDO=90,且D在圆上,于是得到结论;(2)设A=x,则A=P=x,DBA=2x,在ABD中,根据A+ABD=90o列方程求出x的值,进而可得到DOB=60o,然后根据弧长公式计算即可;(3)连结OM,过D作DFAB于点F,然后证明OMNFDN,根据相似三角形的性质求解即可.【详解】(1)连结OD,AB是O的直径,ADB=90o,A+ABD=90o,又OA=OB=OD,BDO=ABD,又A=PDB,PDB+BDO=90o,即PDO=90o,且D在圆上,PD是O的切线 (2)设A=x,DA=DP,A=P=x,D

28、BA=P+BDP=x+x=2x,在ABD中,A+ABD=90o,x=2x=90o,即x=30o,DOB=60o,弧BD长(3)连结OM,过D作DFAB于点F,点M是的中点,OMAB,设BD=x,则AD=2x,AB=2OM,即OM=,在RtBDF中,DF=,由OMNFDN得【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出A=30o是解(2)的关键,证明OMNFDN是解(3)的关键.23、(1)如图所示见解析;(2)四边形OCED是菱形理由

29、见解析.【解析】(1)根据图形平移的性质画出平移后的DEC即可;(2)根据图形平移的性质得出ACDE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论【详解】(1)如图所示;(2)四边形OCED是菱形理由:DEC由AOB平移而成,ACDE,BDCE,OA=DE,OB=CE,四边形OCED是平行四边形四边形ABCD是矩形,OA=OB,DE=CE,四边形OCED是菱形【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.24、 (1)证明见解析;(2)1.【解析】(1)欲证明ADFACG,由可知,只要证明ADF=C即可(2)利用相似三角形的性质得到,由此即可证明【解答】(1)证明:AED=B,DAE=DAE,ADF=C,ADFACG(2)解:ADFACG,又,1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁