《贵州省毕节地区金沙县2023届中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《贵州省毕节地区金沙县2023届中考数学考前最后一卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,直线ykx+b与ymx+n分别交x轴于点A(1,0),B(4,0),则函数y(kx+b)(mx+n)中,则不等式的解集为()Ax2B0x4C1x4Dx1 或 x42若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )ABCD3如图,ACB90,ACBC,ADCE,
2、BECE,若AD3,BE1,则DE( )A1B2C3D44如图,在RtABC中,ACB=90,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则ACD的周长为()A13B17C18D255下列各图中,1与2互为邻补角的是( )ABCD6在实数 ,0.21, , ,0.20202中,无理数的个数为()A1B2C3D47若0m2,则关于x的一元二次方程(x+m)(x+3m)3mx+37根的情况是()A无实数根B有两个正根C有两个根,且都大于3mD有两个根,其中一根大于m8如图,把一块直角三角板的直角顶点放在
3、直尺的一边上,若1=50,则2的度数为( )A50B40C30D259在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手12345678910时间(min)129136140145146148154158165175由此所得的以下推断不正确的是( )A这组样本数据的平均数超过130B这组样本数据的中位数是147C在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好10如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形ABC,CDE,
4、EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则DIJ的面积是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为_12因式分解:x24= 13有一张三角形纸片ABC,A80,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则C的度数可以是_14如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_15如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB
5、1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去则点B6的坐标_16在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_17如图,RtABC纸片中,C=90,AC=6,BC=8,点D在边BC 上,以AD为折痕将ABD折叠得到ABD,AB与边BC交于点E若DEB为直角三角形,则BD的长是_三、解答题(共7小题,满分69分)18(10分)我市某中学艺术节期间,向全校学生征集书画作品九年级美术王老师从全年级14个班中随机抽取了4
6、个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率19(5分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两
7、人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在 一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,则哥哥去。(1)求小丽随机取出一根筷子是红色的概率;(2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。20(8分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PCAB,点M是OP中点(1)求证:四边形OBCP是平行四边形;(2)填空:
8、当BOP 时,四边形AOCP是菱形;连接BP,当ABP 时,PC是O的切线21(10分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.22(10分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上
9、的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.23(12分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.24(14分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CNBE,垂足为M,交AB于点N(1)求证:ABEBCN;(2)若N为AB的中点,求ta
10、nABE参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可【详解】直线y1kx+b与直线y2mx+n分别交x轴于点A(1,0),B(4,0),不等式(kx+b)(mx+n)0的解集为1x4,故选C【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变2、D【解析】一次函数y=ax+b的图象经过第一、二、四象限,a0,a+b不一定大于0,故A错误,ab0,故B错误,ab0,故C错误,0,故D正确
11、故选D.3、B【解析】根据余角的性质,可得DCA与CBE的关系,根据AAS可得ACD与CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案【详解】ADC=BEC=90.BCE+CBE=90,BCE+CAD=90,DCA=CBE,在ACD和CBE中,,ACDCBE(AAS),CE=AD=3,CD=BE=1,DE=CECD=31=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.4、C【解析】在RtABC中,ACB=90,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,
12、在RtABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.5、D【解析】根据邻补角的定义可知:只有D图中的是邻补角,其它都不是故选D6、C【解析】在实数,0.21, , , ,0.20202中,根据无理数的定义可得其中无理数有,共三个故选C7、A【解析】先整理为一般形式,用含m的式子表示出根的判别式,再结合已知条件判断的取值范围即可.【详解】方程整理为,方程没有实数根,故选A【点睛】本题考查了一元二次方程根的判别式,当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根8、B
13、【解析】解:如图,由两直线平行,同位角相等,可求得3=1=50,根据平角为180可得,2=9050=40故选B【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键9、C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解详解:平均数=(129+136+140+145+146+148+154+158+165+175)10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位
14、数是(146+148)2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位10、A【解析】根据等边三角形的性质得到FGEG3,AGFFEG60,根据三角形的内角和得到AFG90,根据相似三角形的性质得到=,=,根据三角形的面积公式即可得到结论【详解】AC1,CE2,EG3,AG6,EFG是等边三角形,FGEG3,AGFFEG60,AEEF3,FAGAFE30,AFG90,CDE是等边三角形,DEC60,AJE90,JEFG,AJEAFG,=,EJ,BCADCEFEG60,BCDDE
15、F60,ACIAEF120,IACFAE,ACIAEF,=,CI1,DI1,DJ,IJ,=DIIJ故选:A【点睛】本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D(1,4)、作点E关于x轴的对称点E(2,3),从而得到四边形EDFG的周长DEDFFGGEDEDFFGGE,当点D、F、G、E四点共线时,周长最短,据此根据勾股定理可得答案.【详解】如图,在yx22x3中,当x0时,y3,即点C(0,
16、3),yx22x3(x1)24,对称轴为x1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D(1,4),作点E关于x轴的对称点E(2,3),连结D、E,DE与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长DEDFFGGEDEDFFGGEDEDE 四边形EDFG周长的最小值是.【点睛】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.12、(x+2)(x-2).【解析】试题分析:直接利用平方差公式分解因式得出x24=(x+2)(x2)考点:因式分解-运用公式法13、
17、25或40或10【解析】【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出ADB,再求出BDC,然后根据等腰三角形两底角相等列式计算即可得解【详解】由题意知ABD与DBC均为等腰三角形,对于ABD可能有AB=BD,此时ADB=A=80,BDC=180-ADB=180-80=100,C=(180-100)=40,AB=AD,此时ADB=(180-A)=(180-80)=50,BDC=180-ADB=180-50=130,C=(180-130)=25,AD=BD,此时,ADB=180-280=20,BDC=180-ADB=180-20=160,C=(180-160)=10
18、,综上所述,C度数可以为25或40或10故答案为25或40或10【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论14、3.【解析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90,ABCD,DEAC,AED90,ADE+DAE90,DAE+ACD90,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形
19、,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.15、 (-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1又因为B6在x轴负半轴,所以B6(-1,0)解:如图所示正方形OBB1C,OB1=,B1所在的象限为第一象限;OB2=()2,B2在x轴正半轴;OB3=()3,B3所在的象限为第四象限;OB4=()4,B4在y轴负半轴;OB5=()5
20、,B5所在的象限为第三象限;OB6=()6=1,B6在x轴负半轴B6(-1,0)故答案为(-1,0)16、【解析】用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解【详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率故答案为【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的
21、结果数目m,求出概率也考查了轴对称图形17、5或1【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB=5,DB=DB,接下来分为BDE=90和BED=90,两种情况画出图形,设DB=DB=x,然后依据勾股定理列出关于x的方程求解即可【详解】RtABC纸片中,C=90,AC=6,BC=8,AB=5,以AD为折痕ABD折叠得到ABD,BD=DB,AB=AB=5如图1所示:当BDE=90时,过点B作BFAF,垂足为F设BD=DB=x,则AF=6+x,FB=8-x在RtAFB中,由勾股定理得:AB5=AF5+FB5,即(6+x)5+(8-x)5=55解得:x1=5,x5=0(舍去)BD=5
22、如图5所示:当BED=90时,C与点E重合AB=5,AC=6,BE=5设BD=DB=x,则CD=8-x在RtBDE中,DB5=DE5+BE5,即x5=(8-x)5+55解得:x=1BD=1综上所述,BD的长为5或1三、解答题(共7小题,满分69分)18、(1)抽样调查;12;3;(2)60;(3)【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进
23、行计算即可得解试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5=12件,B作品的件数为:12252=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=124=3(件),所以,估计全年级征集到参展作品:314=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)=,即恰好抽中一男一女的概率是考点:1条形统计图;2用样本估计总体;3扇形统计图;4列表法与树状图法;5图表型19、(1);(2).【解析】(1)直接利用概率公式计算;(2)画树状图展示所有36种等可能的结果数,再找出两人
24、取出的筷子颜色相同的结果数,然后根据概率公式求解【详解】(1)小丽随机取出一根筷子是红色的概率=;(2)画树状图为:共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为12,所以小丽随爸爸去看新春灯会的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率20、 (1)见解析;(2)120;45【解析】(1)由AAS证明CPMAOM,得出PC=OA,得出PC=OB,即可得出结论;(2)证出OA=OP=PA,得出AOP是等边三角形,A=AOP=60,得出BOP=120即可;由
25、切线的性质和平行线的性质得出BOP=90,由等腰三角形的性质得出ABP=OPB=45即可【详解】(1)PCAB,PCMOAM,CPMAOM点M是OP的中点,OMPM,在CPM和AOM中,CPMAOM(AAS),PCOAAB是半圆O的直径,OAOB,PCOB又PCAB,四边形OBCP是平行四边形(2)四边形AOCP是菱形,OAPA,OAOP,OAOPPA,AOP是等边三角形,AAOP60,BOP120;故答案为120;PC是O的切线,OPPC,OPC90,PCAB,BOP90,OPOB,OBP是等腰直角三角形,ABPOPB45,故答案为45【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质
26、、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键21、(1)直线的解析式为:.(2)平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式(2)设O2平移t秒后到O3处与O1第一次外切于点P,O3与x轴相切于D1点,连接O1O3,O3D1在直角O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间【详解】(1)由题意得,点坐标为.在中,点的坐标为.设直线的解析式为,由过、两点,得,解得,直线的解析式为:.(2)如图
27、,设平移秒后到处与第一次外切于点,与轴相切于点,连接,.则,轴,在中,.,(秒),平移的时间为5秒.【点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的22、(1)(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分【解析】试题分析:(1)列表如下:共有16种情况,且每种情况出现的可能性相同,其中,乘积是2的倍数的有12种,乘积是3的倍数的有7种.(两数乘积是2的倍数)(两数乘积是3的倍数)(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲
28、得7分,若得到的积是3的倍数,则乙得12分考点:概率的计算点评:题目难度不大,考查基本概率的计算,属于基础题。本题主要是第二问有点难度,对游戏规则的确定,需要一概率为基础。23、(1);(2)或1.【解析】(1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.【详解】(1)当时,有,由方程,解得,即.由方程,解得,即.因为为线段上一点,所以.(2)解方程,得,即.解方程,得,即.当为线段靠近点的三等分点时,则,即,解得.
29、当为线段靠近点的三等分点时,则,即,解得.综上可得,或1.【点睛】本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.24、(1)证明见解析;(2)【解析】(1)根据正方形的性质得到ABBC,ACBN90,1290,根据垂线和三角形内角和定理得到2390,推出13,根据ASA推出ABEBCN;(2)tanABE,根据已知求出AE与AB的关系即可求得tanABE.【详解】(1)证明:四边形ABCD为正方形AB=BC,A=CBN=90,1+2=90CMBE,2+3=901=3在ABE和BCN中,ABEBCN(ASA);(2)N为AB中点,BN=AB又ABEBCN,AE=BN=AB在RtABE中,tanABE【点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出ABEBCN是解此题的关键.