贵州省六盘水市2023年中考联考数学试卷含解析.doc

上传人:茅**** 文档编号:88319790 上传时间:2023-04-25 格式:DOC 页数:14 大小:528.50KB
返回 下载 相关 举报
贵州省六盘水市2023年中考联考数学试卷含解析.doc_第1页
第1页 / 共14页
贵州省六盘水市2023年中考联考数学试卷含解析.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《贵州省六盘水市2023年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《贵州省六盘水市2023年中考联考数学试卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A极差是3.5B众数是1.5C中位数是3D平均数

2、是321903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A810 年B1620 年C3240 年D4860 年3如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果AEF的面积为2,那么四边形CDFE的面积等于( )A18B22C24D464如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,BEF的面积为4,则平行四边

3、形ABCD的面积为()A30B27C14D325在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家”其中3400000用科学记数法表示为()A0.34107B3.4106C3.4105D341056如图,五边形ABCDE中,ABCD,1、2、3分别是BAE、AED、EDC的外角,则1+2+3等于A90B180C210D2707某排球队名场上队员的身高(单位:)是:,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方差变小D平

4、均数变大,方差变大8神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )A2.8103B28103C2.8104D0.281059的倒数是( )AB-3C3D10不等式组的解在数轴上表示为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11将一个含45角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为_12如图,平行线AB、CD被直线EF所截,若2=130,则1=_13已知一粒米的质量是1111121千克,这个数字用科学记数法表示为_14如图,在长方形ABCD中,A

5、FBD,垂足为E,AF交BC于点F,连接DF图中有全等三角形_对,有面积相等但不全等的三角形_对15关于x的一元二次方程x2+4xk=0有实数根,则k的取值范围是_16抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:b2-4ac1;当x-1时y随x增大而减小;a+b+c1;若方程ax2+bx+c-m=1没有实数根,则m2;3a+c1其中,正确结论的序号是_17计算:3130_.三、解答题(共7小题,满分69分)18(10分)如图,矩形中,点是线段上一动点, 为的中点, 的延长线交BC于.(1)求证: ;(2)若

6、,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.19(5分)计算:sin30tan60+.20(8分)如图,是55正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上(1)在图(1)中画出一个等腰ABE,使其面积为3.5;(2)在图(2)中画出一个直角CDF,使其面积为5,并直接写出DF的长21(10分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30,然后向山脚直行60米到达C处,再测得山顶A的仰角为45,求山高AD的长度(测角仪高度忽略不计)22(10分)如图,已知抛物线y=ax

7、2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0)(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PCPD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由23(12分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,PAB=38.1,PBA=26.1请帮助小张求出小桥PD的长并确定小桥在小道上的位置(以A,B为参照点,结果精确到0.1米)(参考数据:s

8、in38.1=0.62,cos38.1=0.78,tan38.1=0.80,sin26.1=0.41,cos26.1=0.89,tan26.1=0.10)24(14分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?参考答案一、选择题(

9、每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为(2.5+3)=2.75,此选项错误;D.平均数为:(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.2、B【解析】根据半衰期的定

10、义,函数图象的横坐标,可得答案【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键3、B【解析】连接FC,先证明AEFBEC,得出AEEC=13,所以SEFC=3SAEF,在根据点F是ABCD的边AD上的三等分点得出SFCD=2SAFC,四边形CDFE的面积=SFCD+ SEFC,再代入AEF的面积为2即可求出四边形CDFE的面积.【详解】解:ADBC,EAF=ACB,AFE=FBC;AEF=BEC,AEFBEC,=,AEF与EFC高相等,SEFC=3SAEF,点F是ABCD的边AD

11、上的三等分点,SFCD=2SAFC,AEF的面积为2,四边形CDFE的面积=SFCD+ SEFC=16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.4、A【解析】四边形ABCD是平行四边形,AB/CD,AB=CD,AD/BC,BEFCDF,BEFAED, ,BE:AB=2:3,AE=AB+BE,BE:CD=2:3,BE:AE=2:5, ,SBEF=4,SCDF=9,SAED=25,S四边形ABFD=SAED-SBEF=25-4=21,S平行四边形ABCD=SCDF+S四边形ABFD=9+21=30,故选A

12、.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.5、B【解析】解:3400000=.故选B.6、B【解析】试题分析:如图,如图,过点E作EFAB,ABCD,EFABCD,1=4,3=5,1+2+3=2+4+5=180,故选B7、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为=188,方差为S2=;换人后6名队员身高的平均数为=187,方差为S2=188187,平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义

13、:一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8、C【解析】试题分析:28000=1.11故选C考点:科学记数法表示较大的数9、A【解析】先求出,再求倒数.【详解】因为所以的倒数是故选A【点睛】考核知识点:绝对值,相反数,倒数.10、C【解析】先解每一个不等式,再根据结果判断数轴表示的正确方法【详解】解:由不等式,得3x5-2,解得x1,由不等式,得-2x1-5,解得x2,数轴表示的正确方法为C故选C【点睛】考核知识点:解不等式组.二、填空题(共7小题,每小题3分,满分21分)

14、11、【解析】先求得ACO=60,得出OAC=30,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B的坐标【详解】解:ACB=45,BCB=75,ACB=120,ACO=60,OAC=30,AC=2OC,点C的坐标为(1,0),OC=1,AC=2OC=2,ABC是等腰直角三角形,B点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题12、50【解析】利用平行线的性质推出EFC=2=130,再根据邻补角的性质即可解决问题.【详解】ABCD,EFC=2=130,1=180-EFC=50,故答案

15、为50【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题13、【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定【详解】解:1.111121=2.111-2故答案为:2.111-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a11-n,其中1|a|11,n由原数左边起第一个不为零的数字前面的1的个数所决定14、1 1 【解析】根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,BAD=C=90,

16、然后利用“边角边”证明RtABD和RtCDB全等;根据等底等高的三角形面积相等解答【详解】有,RtABDRtCDB,理由:在长方形ABCD中,AB=CD,AD=BC,BAD=C=90,在RtABD和RtCDB中,RtABDRtCDB(SAS);有,BFD与BFA,ABD与AFD,ABE与DFE,AFD与BCD面积相等,但不全等故答案为:1;1【点睛】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等15、k1【解析】分析:根据方程的系数结合根的判别式0,即可得出关于k的一元一次不等式,解之即可得出结论详解:关于x的一元二次方程x2+1x-k=0有实数根,=12-11(-k

17、)=16+1k0,解得:k-1故答案为k-1点睛:本题考查了根的判别式,牢记“当0时,方程有实数根”是解题的关键16、【解析】试题解析:二次函数与x轴有两个交点,b2-4ac1,故错误,观察图象可知:当x-1时,y随x增大而减小,故正确,抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,x=1时,y=a+b+c1,故正确,当m2时,抛物线与直线y=m没有交点,方程ax2+bx+c-m=1没有实数根,故正确,对称轴x=-1=-,b=2a,a+b+c1,3a+c1,故正确,故答案为.17、.【解析】原式利用零指数幂、负整数指数幂法则计算即可求出值【详解】原式1.故答案是:.【点睛】考查了实数

18、的运算,熟练掌握运算法则是解本题的关键三、解答题(共7小题,满分69分)18、 (1)证明见解析;(2) PD=8-t,运动时间为秒时,四边形PBQD是菱形【解析】(1)先根据四边形ABCD是矩形,得出ADBC,PDO=QBO,再根据O为BD的中点得出PODQOB,即可证得OP=OQ;(2)根据已知条件得出A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形【详解】(1)四边形ABCD是矩形,ADBC,PDO=QBO,又O为BD的中点,OB=OD,在POD与QOB中,PODQOB,OP=OQ;(2)

19、PD=8-t,四边形PBQD是菱形,BP=PD= 8-t,四边形ABCD是矩形,A=90,在RtABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=,即运动时间为秒时,四边形PBQD是菱形【点睛】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.19、 【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=.20、 (1)见解析;(2)DF 【解析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案【详解】(1)

20、如图(1)所示:ABE,即为所求;(2)如图(2)所示:CDF即为所求,DF=【点睛】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键21、30米【解析】设ADxm,在RtACD中,根据正切的概念用x表示出CD,在RtABD中,根据正切的概念列出方程求出x的值即可【详解】由题意得,ABD30,ACD45,BC60m,设ADxm,在RtACD中,tanACD,CDADx,BDBC+CDx+60,在RtABD中,tanABD,米,答:山高AD为30米【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键22、 (1)

21、y=(x1)2+9 ,D(1,9); (2)p=1;(3)存在点Q(2,1)使QBC的面积最大【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PCPD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,m2+2m+1)(0m4),然后用含m的代数式表达出BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.详解:(1)抛物线y=ax2+2

22、x+1经过点B(4,0),16a+1+1=0,a=1,抛物线的解析式为y=x2+2x+1=(x1)2+9,D(1,9);(2)当x=0时,y=1,C(0,1)设直线CD的解析式为y=kx+b将点C、D的坐标代入得:,解得:k=1,b=1,直线CD的解析式为y=x+1当y=0时,x+1=0,解得:x=1,直线CD与x轴的交点坐标为(1,0)当P在直线CD上时,|PCPD|取得最大值,p=1;(3)存在,理由:如图,由(2)知,C(0,1),B(4,0),直线BC的解析式为y=2x+1,过点Q作QEy轴交BC于E,设Q(m,m2+2m+1)(0m4),则点E的坐标为:(m,2m+1),EQ=m2+

23、2m+1(2m+1)=m2+4m,SQBC=(m2+4m)4=2(m2)2+1,m=2时,SQBC最大,此时点Q的坐标为:(2,1)点睛:(1)解第2小题时,知道当点P在直线CD上时,|PCPD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,m2+2m+1)(0m4),并结合点B、C的坐标把BCQ的面积用含m的代数式表达出来.23、49.2米【解析】设PD=x米,在RtPAD中表示出AD,在RtPDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置【详解】解:设PD=x米,PDAB,ADP=BDP=90在RtP

24、AD中,在RtPBD中,又AB=80.0米,解得:x24.6,即PD24.6米DB=2x=49.2米答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米24、(1)2400元;(2)8台【解析】试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;(2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得 解得 经检验,是原方程的解答:第一次购入的空调每台进价是2 400元(2)由(1)知第一次购入空调的台数为24 0002 40010(台),第二次购入空调的台数为10220(台)设第二次将y台空调打折出售,由题意,得解得 答:最多可将8台空调打折出售

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁