福建省建瓯市达标名校2023年中考适应性考试数学试题含解析.doc

上传人:茅**** 文档编号:88319619 上传时间:2023-04-25 格式:DOC 页数:15 大小:631KB
返回 下载 相关 举报
福建省建瓯市达标名校2023年中考适应性考试数学试题含解析.doc_第1页
第1页 / 共15页
福建省建瓯市达标名校2023年中考适应性考试数学试题含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《福建省建瓯市达标名校2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《福建省建瓯市达标名校2023年中考适应性考试数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果代数式有意义,则实数x的取值范围是( )Ax3Bx0Cx3且x0Dx32已知,如图,AB/CD,DCF=100,则AEF的度数为 ( )A120B110C100D803比1小2的数是( )ABCD4在如图所示的数轴上,点B与点C关于点A对称,A

2、、B两点对应的实数分别是和1,则点C所对应的实数是( )A1+B2+C21D2+15如图,在O中,O为圆心,点A,B,C在圆上,若OA=AB,则ACB=()A15B30C45D606若点A(1,a)和点B(4,b)在直线y2xm上,则a与b的大小关系是()AabBabCabD与m的值有关7某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A18分,17分 B20分,17分 C20分,19分 D20分,20分8在平面直角坐标系中,位于第二象限的点是()A(1,0)B(2,3)C(2,1)D(3,1)9下面的统计图反映了

3、我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A2011年我国的核电发电量占总发电量的比值约为1.5%B2006年我国的总发电量约为25000亿千瓦时C2013年我国的核电发电量占总发电量的比值是2006年的2倍D我国的核电发电量从2008年开始突破1000亿千瓦时10抛物线y=ax24ax+4a1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x12x2,x1+x24,则下列判断正确的是()AmnBmnCmnDmn11如图,ABC中,ABAC,CAD为ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )ADAE=BBEAC=C

4、CAEBCDDAE=EAC12如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A或B或C或D或二、填空题:(本大题共6个小题,每小题4分,共24分)13因式分解:x34x=_14如图,若1+2=180,3=110,则4= 15已知 x(x+1)x+1,则x_16某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.17计算的结果是_.18一个多边形的每个内角都等于150,则这个多边形是_边形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一次函数的图象与反比例函数的图

5、象交于C,D两点,与x,y轴交于B,A两点,且,作轴于E点求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围20(6分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是32,两队共同施工6天可以完成(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?21(6分)已知平行四边形ABCD中,CE平分BCD且交AD于点E,AFCE,且交BC于点F 求证:ABFCDE; 如图,

6、若1=65,求B的大小22(8分)解不等式组,并把解集在数轴上表示出来23(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45改为30. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由(说明:的计算结果精确到0.1米,参考数据:1.41,1.73,2.24,2.45)24(10分)如图,在RtABC中,ABC=90o,AB是O的直径,O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,A=PDB(1)求证:P

7、D是O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图,点M是弧AB的中点,连结DM,交AB于点N若tanA=,求的值25(10分)已知抛物线y=x24x+c经过点A(2,0)(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C若B、C都在抛物线上,求m的值;若点C在第四象限,当AC2的值最小时,求m的值26(12分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生

8、人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.27(12分)给定关于x的二次函数ykx24kx+3(k0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:与y轴的交点不变;对称轴不变;一定经过两个定点;请判断以上结论是否正确,并说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解

9、析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可【详解】由题意得,x+30,x0,解得x3且x0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.2、D【解析】先利用邻补角得到DCE=80,然后根据平行线的性质求解【详解】DCF=100,DCE=80,ABCD,AEF=DCE=80故选D【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等3、C【解析】1-2=-1,故选C4、D【解析】设点C所对应的实数是x根据中心对称的性质,对称点到对称中心的距离相等,则有,解得.故选D.5、B【解析

10、】根据题意得到AOB是等边三角形,求出AOB的度数,根据圆周角定理计算即可【详解】解:OA=AB,OA=OB,AOB是等边三角形,AOB=60,ACB=30,故选B【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键6、A【解析】【分析】根据一次函数性质:中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小.由-2y2.【详解】因为,点A(1,a)和点B(4,b)在直线y2xm上,-20,所以,y随x的增大而减小.因为,1b.故选A【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中

11、y与x的大小关系,关键看k的符号.7、D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D点睛:本题考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数

12、8、D【解析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可【详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(3,1)符合,故选:D【点睛】本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.9、B【解析】由折线统计图和条形统计图对各选项逐一判断即可得【详解】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为5002.0%25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012

13、年开始突破1000亿千瓦时,此选项错误;故选:B【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况10、C【解析】分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.详解: 此抛物线对称轴为 抛物线与x轴交于两点,当时,得 故选C点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,11、D【解析】解:根据图中尺规作图的痕迹,可得DAE=B,

14、故A选项正确,AEBC,故C选项正确,EAC=C,故B选项正确,ABAC,CB,CAEDAE,故D选项错误,故选D【点睛】本题考查作图复杂作图;平行线的判定与性质;三角形的外角性质12、B【解析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,使成立的取值范围是或,故选B【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、x(x+2)(x2)【解析】试题分析:首先提取公因式x,进而利用平方差公式分解因式即x

15、34x=x(x24)=x(x+2)(x2)故答案为x(x+2)(x2)考点:提公因式法与公式法的综合运用14、110【解析】解:1+2=180,ab,3=4,又3=110,4=110故答案为11015、1或-1【解析】方程可化为:,或,或.故答案为1或-1.16、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此

16、题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础17、【解析】原式= ,故答案为.18、1【解析】根据多边形的内角和定理:180(n-2)求解即可【详解】由题意可得:180(n-2)=150n,解得n=1故多边形是1边形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1),;(2)8;(3)或【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(

17、3)根据函数的图象和交点坐标即可求解试题解析:解:(1)OB=4,OE=2,BE=2+4=1CEx轴于点E,tanABO=,OA=2,CE=3,点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(2,3)一次函数y=ax+b的图象与x,y轴交于B,A两点,解得:故直线AB的解析式为反比例函数的图象过C,3=,k=1,该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,1),则BOD的面积=412=2,BOC的面积=432=1,故OCD的面积为2+1=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x2或0x1点睛:

18、本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点20、(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元【解析】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x的分式方程,解之经检验即可得出结论;(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论【详解】(1)设甲队单

19、独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得: 解得:x=5,经检验,x=5是所列分式方程的解且符合题意3x=15,2x=1答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天(2)甲、乙两队单独完成这项工作所需的时间比是3:2,甲、乙两队每日完成的工作量之比是2:3,甲队应得的报酬为(元),乙队应得的报酬为40001600=2400(元)答:甲队应得的报酬为1600元,乙队应得的报酬为2400元【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键21、(1)证明见解析;(2)50【解析】试题分析:(1)由平行四边形的性质得出AB=

20、CD,ADBC,B=D,得出1=DCE,证出AFB=1,由AAS证明ABFCDE即可;(2)由(1)得1=DCE=65,由平行四边形的性质和三角形内角和定理即可得出结果试题解析:(1)四边形ABCD是平行四边形, AB=CD,ADBC,B=D, 1=DCE,AFCE, AFB=ECB, CE平分BCD, DCE=ECB, AFB=1,在ABF和CDE中, ABFCDE(AAS);(2)由(1)得:1=ECB,DCE=ECB, 1=DCE=65,B=D=180265=50考点:(1)平行四边形的性质;(2)全等三角形的判定与性质22、1x1【解析】求不等式组的解集首先要分别解出两个不等式的解集,

21、然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式,得x1,解不等式,得x1,不等式组的解集是1x1不等式组的解集在数轴上表示如下:23、(1)5.6(2)货物MNQP应挪走,理由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45=4在RtACD中,ACD=30AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45=4 在RtACD中,CD=ACcos30= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走24、(1)

22、见解析;(2);(3). 【解析】(1)连结OD;由AB是O的直径,得到ADB=90,根据等腰三角形的性质得到ADO=A,BDO=ABD;得到PDO=90,且D在圆上,于是得到结论;(2)设A=x,则A=P=x,DBA=2x,在ABD中,根据A+ABD=90o列方程求出x的值,进而可得到DOB=60o,然后根据弧长公式计算即可;(3)连结OM,过D作DFAB于点F,然后证明OMNFDN,根据相似三角形的性质求解即可.【详解】(1)连结OD,AB是O的直径,ADB=90o,A+ABD=90o,又OA=OB=OD,BDO=ABD,又A=PDB,PDB+BDO=90o,即PDO=90o,且D在圆上,

23、PD是O的切线 (2)设A=x,DA=DP,A=P=x,DBA=P+BDP=x+x=2x,在ABD中,A+ABD=90o,x=2x=90o,即x=30o,DOB=60o,弧BD长(3)连结OM,过D作DFAB于点F,点M是的中点,OMAB,设BD=x,则AD=2x,AB=2OM,即OM=,在RtBDF中,DF=,由OMNFDN得【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出A=30o是解(2)的关键,证明OMNFDN是解(3)的关键.

24、25、(1)抛物线解析式为y=x24x+12,顶点坐标为(2,16);(2)m=2或m=2;m的值为 【解析】分析:(1)把点A(2,0)代入抛物线y=x24x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)由B(m,n)在抛物线上可得m24m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(m,n),又因C落在抛物线上,可得m2+4m+12=n,即m24m12=n,所以m2+4m+12=m24m12,解方程求得m的值即可;已知点C(m,n)在第四象限,可得m0,n0,即m0,n0,再由抛物线顶点坐标为(2,16),即可得0n16,因为点B在

25、抛物线上,所以m24m+12=n,可得m2+4m=n+12,由A(2,0),C(m,n),可得AC2=(m2)2+(n)2=m2+4m+4+n2=n2n+16=(n)2+,所以当n=时,AC2有最小值,即m24m+12=,解方程求得m的值,再由m0即可确定m的值详解:(1)抛物线y=x24x+c经过点A(2,0),48+c=0,即c=12,抛物线解析式为y=x24x+12=(x+2)2+16,则顶点坐标为(2,16);(2)由B(m,n)在抛物线上可得:m24m+12=n,点B关于原点的对称点为C,C(m,n),C落在抛物线上,m2+4m+12=n,即m24m12=n,解得:m2+4m+12=

26、m24m12,解得:m=2或m=2;点C(m,n)在第四象限,m0,n0,即m0,n0,抛物线顶点坐标为(2,16),0n16,点B在抛物线上,m24m+12=n,m2+4m=n+12,A(2,0),C(m,n),AC2=(m2)2+(n)2=m2+4m+4+n2=n2n+16=(n)2+,当n=时,AC2有最小值,m24m+12=,解得:m=,m0,m=不合题意,舍去,则m的值为点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求

27、得当n=时,AC2有最小值,在解方程求得m的值即可.26、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108.【解析】试题分析:(1)用“极高”的人数所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数调查的学生人数,即可得到所占的百分比,所占的百分比即可求出对应的扇形圆心角的度数.试题解析:(人).学生学习兴趣为“高”的人数为:(人).补全统计图如下:分组后学生学习兴趣为“中”的所占的百分比为:学生学习兴趣为“中”对应扇形的圆心角为:27、(1)(2)1(3)【解析】(1)由抛物线与x轴只有一个交

28、点,可知=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断【详解】(1)二次函数ykx24kx+3与x轴只有一个公共点,关于x的方程kx24kx+30有两个相等的实数根,(4k)243k16k212k0,解得:k10,k2,k0,k;(2)AB2,抛物线对称轴为x2,A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k1,(3)当x0时,y3,二次函数图象与y轴的交点为(0,3),正确;抛物线的对称轴为x2,抛物线的对称轴不变,正确;二次函数ykx24kx+3k(x24x)+3,将其看成y关于k的一次函数,令k的系数为0,即x24x0,解得:x10,x24,抛物线一定经过两个定点(0,3)和(4,3),正确综上可知:正确的结论有【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁