《福建省平和第一中学2022-2023学年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省平和第一中学2022-2023学年中考数学押题试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列计算正确的是( )Ax2+x2=x4 Bx8x2=x4 Cx2x3=x6 D(-x)2-x2=02如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米ABCD3在1、1、
2、3、2这四个数中,最大的数是()A1B1C3D24九章算术是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就它的算法体系至今仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A13寸B20寸C26寸D28寸5把多项式ax32ax2+ax分解因式,结果正确的是()Aax(x22x)Bax2(x2)Cax(x+1)(x1
3、)Dax(x1)26如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,若2=40,则图中1的度数为( )A115B120C130D1407计算(5)(3)的结果等于()A8 B8 C2 D28小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:西游记、施耐庵、安徒生童话、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )ABCD9下列方程中,两根之和为2的是()Ax2+2x3=0Bx22x3=0Cx22x+3=0D4x22x3=010如图,在平面直角坐标系xOy中,由绕点P旋转得
4、到,则点P的坐标为( )A(0, 1)B(1, -1)C(0, -1)D(1, 0)11a、b互为相反数,则下列成立的是()Aab=1Ba+b=0Ca=bD=-112如图,点A,B为定点,定直线l/AB,P是l上一动点点M,N分别为PA,PB的中点,对于下列各值:线段MN的长;PAB的周长;PMN的面积;直线MN,AB之间的距离;APB的大小其中会随点P的移动而变化的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,正五边形ABCDE和正三角形AMN都是O的内接多边形,则BOM_.14对于函数y= ,当函数y-3时,自变量x的取值范围是_ .15某校“百变魔方”社
5、团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_.16分解因式:174的平方根是 18不等式组的最大整数解是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) (1)计算:(2)先化简,再求值:,其中x是不等式的负整数解.20(6分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1
6、)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交BC的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c221(6分)如图,在平面直角坐标系中,O为坐标原点,AOB是等腰直角三角形,AOB=90,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的
7、坐标;若不存在,请说明理由.22(8分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表请结合图表所给出的信息解答下列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率23(8分)已知关于 x 的一元二次方程 x22(k1)x+k(k+2)0 有两个不相等的实数根求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根24(10分)如图,已
8、知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。 (1)求一次函数的解析式; (2)求的面积。25(10分)解不等式组:,并把解集在数轴上表示出来。26(12分)如图,ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将ABC向左平移4个单位长度后得到的图形A1B1C1;(2)请画出ABC关于原点O成中心对称的图形A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标27(12分)西安汇聚了很多人们耳熟能详的陕西美食李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(b
9、iang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方2、A【解析】
10、试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O连接OA根据垂径定理和勾股定理求解得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r4)2,解得r=6.5考点:垂径定理的应用3、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数是1故选C【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小4
11、、C【解析】分析:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,O的直径为26寸,故选C点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题5、D【解析】先提取公因式ax,再根据完全平方公式把x22x+1继续分解即可.【详解】原式=ax(x22x+1)=ax(x1)2,故选D【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;
12、十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.6、A【解析】解:把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,BFE=EFB,B=B=902=40,CFB=50,1+EFBCFB=180,即1+150=180,解得:1=115,故选A7、C【解析】分析:减去一个数,等于加上这个数的相反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)8、D【解析】根据
13、题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是;故选D【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比9、B【解析】由根与系数的关系逐项判断各项方程的两根之和即可【详解】在方程x2+2x-3=0中,两根之和
14、等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,=(-2)2-43=-80,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,故选B【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键10、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC、AA的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变
15、化旋转.11、B【解析】依据相反数的概念及性质即可得【详解】因为a、b互为相反数,所以a+b=1,故选B【点睛】此题主要考查相反数的概念及性质相反数的定义:只有符号不同的两个数互为相反数,1的相反数是112、B【解析】试题分析:、MN=AB,所以MN的长度不变;、周长CPAB=(AB+PA+PB),变化;、面积SPMN=SPAB=ABh,其中h为直线l与AB之间的距离,不变;、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;、画出几个具体位置,观察图形,可知APB的大小在变化故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线二、填空题:(本大题共6个小题,每小题4
16、分,共24分)13、48【解析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可【详解】连接OA,五边形ABCDE是正五边形,AOB=72,AMN是正三角形,AOM=120,BOM=AOM-AOB=48,故答案为48点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键14、-x0【解析】根据反比例函数的性质:y随x的增大而减小去解答.【详解】解:函数y= 中,y随x的增大而减小,当函数y-3时又函数y= 中,故答案为:-x0.【点睛】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.15、【解析】分析:设A
17、款魔方的单价为x元,B魔方单价为y元,根据“购买两个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同”,即可得出关于x,y的二元一次方程组,此题得解解:设A魔方的单价为x元,B款魔方的单价为y元,根据题意得: 故答案为 点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键16、【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式因此,先提取公因式后继续应用平方差公式分解即可:考点:提公因式法和应用公式法因式分解17
18、、1【解析】试题分析:,4的平方根是1故答案为1考点:平方根18、【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解【详解】解:,由不等式得x1,由不等式得x-1,其解集是-1x1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1故答案为:1【点睛】考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)5;(2),3.【解析】试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到
19、结果;(2)先化简,再求得x的值,代入计算即可试题解析:(1)原式121245;(2)原式,当3x71,即 x2时的负整数时,(x1)时,原式3.20、见解析.【解析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,S五边形ACBED=SACB+SABE+SADE=ab+b1+ab,又S五边形ACBED=SACB+SABD+SBDE=ab+c1+a(b-a),ab+b1+ab=ab+c1+a(b-a),a1+b1=c1【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形
20、ACBED的面积是解本题的关键21、 (1) B(-1.2);(2) y=;(3)见解析.【解析】(1)过A作ACx轴于点C,过B作BDx轴于点D,则可证明ACOODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PEy轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标【详解】(1)如图1,过A作ACx轴于点C,过B作BDx轴于点D,
21、AOB为等腰三角形,AO=BO,AOB=90,AOC+DOB=DOB+OBD=90,AOC=OBD,在ACO和ODB中 ACOODB(AAS),A(2,1),OD=AC=1,BD=OC=2,B(-1,2);(2)抛物线过O点,可设抛物线解析式为y=ax2+bx,把A、B两点坐标代入可得,解得,经过A、B、O原点的抛物线解析式为y=x2-x;(3)四边形ABOP,可知点P在线段OA的下方,过P作PEy轴交AO于点E,如图2,设直线AO解析式为y=kx,A(2,1),k=,直线AO解析式为y=x,设P点坐标为(t,t2-t),则E(t,t),PE=t-(t2-t)=-t2+t=-(t-1)2+,S
22、AOP=PE2=PE-(t-1)2+,由A(2,1)可求得OA=OB=,SAOB=AOBO=,S四边形ABOP=SAOB+SAOP=-(t-1)2+=,-0,当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-)【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键本题考查知识点较多,综合性较强,难度适中22、(1)300人(
23、2)b=0.15,c=0.2;(3) 【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.详解:(1)由题意可得:该校初三学生共有:1050.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=3000.3=90(人),b=0.15,c=0.2;如图所示:(3)画树形图得:一共有12种情况,抽取到甲和乙的有2种,P(抽到甲和乙)=点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状
24、图得出所有情况是解题关键.23、方程的根【解析】(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根【详解】(1)关于x的一元二次方程x11(ka)x+k(k+1)=0有两个不相等的实数根,=1(k1)14k(k1)=16k+40,解得:k (1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=1当k=0时,方程的根为0和1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根”;(1)取k=0,再利用分
25、解因式法解方程24、(1);(2)6.【解析】(1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)令直线AB与y轴交点为D,求出点D坐标,然后根据三角形面积公式进行求解即可得.【详解】(1)当x=2时,=4,当y=-2时,-2=,x=-4,所以点A(2,4),点B(-4,-2),将A,B两点分别代入一次函数解析式,得,解得:,所以,一次函数解析式为;(2)令直线AB与y轴交点为D,则OD=b=2,.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.25、,解集在数轴上表示见
26、解析【解析】试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可试题解析:由得:由得:不等式组的解集为:解集在数轴上表示为:26、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0)【解析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2)找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A,连接BA,与x轴交点即为P【详解】(1)如图1所示,A1B1C1,即为所求:(2)如图2所示,A2B2C2,即为所求:(3)找出A的对称点A(1,1),连接BA,与x轴交点即为P;如图3所示
27、,点P即为所求,点P坐标为(2,0)【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键27、(1);(2)见解析.【解析】(1)直接根据概率的意义求解即可;(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案【详解】解:(1)李华选择的美食是羊肉泡馍的概率为;(2)列表得:EFGHAAEAFAGAHBBEBFBGBHCCECFCGCHDDEDFDGDH由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,所以李华和王涛选择的美食都是凉皮的概率为=【点睛】本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力用到的知识点为:概率=所求情况数与总情况数之比