《甘肃省平凉市2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省平凉市2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球则两次摸出的小球的标号的和等于6的概率为()ABCD2对于函数y=,下列说法正确的是()Ay是x的反比例函数B它的图象过原点C它的图象不经过第三象限Dy随x的增大而减小3
2、某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A方差 B极差 C中位数 D平均数4一元二次方程x25x6=0的根是()Ax1=1,x2=6Bx1=2,x2=3Cx1=1,x2=6Dx1=1,x2=65已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方下列结论:;其中正确结论的个数是( )个A4个B3个C2个D1个6如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90,点O的对应点B恰好落在双曲线y=(x0)上,则k的值为( )A2B3C4D67如图,将
3、边长为3a的正方形沿虚线剪成两块正方形和两块长方形若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A3a+2bB3a+4bC6a+2bD6a+4b8如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是ABCD39如图,ABC中,DEBC,AE2cm,则AC的长是()A2cmB4cmC6cmD8cm10已知二次函数y=(x+m)2n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11在RtABC中,C=90,sinA=,那么cosA=_12中国的陆地面积约为9 600 0
4、00km2,把9 600 000用科学记数法表示为 13某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_14如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_15如图,在每个小正方形的边长为1的网格中,A,B为格点()AB的长等于_()请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且ABC的面积等于,并简要说明点C的位置是如何找到的_16方程x-1=的解为:_17某校为了了解学
5、生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在22.5小时之间的学生数大约是全体学生数的_(填百分数)三、解答题(共7小题,满分69分)18(10分)小明对,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表超市女工人数占比62.5%62.5%50%75%超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是
6、.你认为谁说的对,并说明理由.19(5分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率20(8分)如图,BAO=90
7、,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=90(2)若m=4,求BE的长(3)在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的值当tanDBE=时,直接写出CDP与BDP面积比21(10分)在平面直角坐标系中,ABC的顶点坐标是A(2,3),B(4,1), C(2,0)点P(m,n)为ABC内一点,平移ABC得到A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处(1)画出A1B1C1(2)将ABC绕坐标点C逆时针旋转90得到A2B2
8、C,画出A2B2C;(3)在(2)的条件下求BC扫过的面积22(10分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式请您确定当购买A种奖品多少件时,费用W的值最少23(12分)如图,AB是O的直径,D、D为O上两点,CFAB于点F,CEAD交AD的延长线于点E,且CE=CF.(1)求证:CE是O的切线;(2)连接CD、C
9、B,若AD=CD=a,求四边形ABCD面积.24(14分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,DE交AC于点E,且AADE求证:DE是O的切线;若AD16,DE10,求BC的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可解:共16种情况,和为6的情况数有3种,所以概率为故选C2、C【解析】直接利用反比例函数的性质结合图象分布得出答案【详解】对于函数y=,y是x2的反比例函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第
10、三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键3、C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了故选C4、D【解析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1”来解题【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D【点睛】本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法
11、,要根据方程的提点灵活选用合适的方法本题运用的是因式分解法5、B【解析】分析:根据已知画出图象,把x=2代入得:4a2b+c=0,把x=1代入得:y=ab+c0,根据不等式的两边都乘以a(a2a,由4a2b+c=0得而0c0.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(2,0)、(x1,0),且1x10,如图A点,错误;(2,0)、(x1,0),且1x1,取符合条件1x12的任何一个x1,2x12,由一元二次方程根与系数的关系知 不等式的两边都乘以a(a2a, 2a+c0,正确;由4a2b+c=0得 而0c2, 12ab0,正确.所以三项正确故选B.点睛:属于二次函数综合题,考查
12、二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.6、B【解析】作ACy轴于C,ADx轴,BDy轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90,点O的对应B点,所以相当是把AOC绕点A逆时针旋转90得到ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值【详解】作ACy轴于C,ADx轴,BDy轴,它们相交于D,如图,A点坐标为(1,1),AC=1,OC=1AO绕点A逆时针旋转90,点O的对应B点,即把AOC绕点A逆时针旋转90得到ABD,A
13、D=AC=1,BD=OC=1,B点坐标为(2,1),k=21=2故选B【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k也考查了坐标与图形变化旋转7、A【解析】根据这块矩形较长的边长边长为3a的正方形的边长边长为2b的小正方形的边长边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a2b+2b2=3a2b+4b=3a+2b故这块矩形较长的边长为3a+2b故选A【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.8、B【解析】如果点
14、A,B表示的数的绝对值相等,那么AB的中点即为坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键9、C【解析】由可得ADEABC,再根据相似三角形的性质即可求得结果.【详解】ADEABCAC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.10、C【解析】试题解析:观察二次函数图象可知: 一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限
15、.故选D.二、填空题(共7小题,每小题3分,满分21分)11、 【解析】RtABC中,C=90,sinA=,sinA=,c=2a,b= ,cosA=,故答案为.12、9.61【解析】将9600000用科学记数法表示为9.61故答案为9.6113、100(1+x)2=121【解析】根据题意给出的等量关系即可求出答案【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型14、4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x4).15、 取格点P、N(SPAB=),作直线P
16、N,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求 【解析】()利用勾股定理计算即可;()取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【详解】解:()AB= =,故答案为()如图取格点P、N(使得SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求故答案为:取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【点睛】本题考查作图应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型16、【解析】
17、两边平方解答即可【详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解故答案为 【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验17、【解析】用被抽查的100名学生中参加社会实践活动时间在22.5小时之间的学生除以抽查的学生总人数,即可得解【详解】由频数分布直方图知,22.5小时的人数为100(8+24+30+10)=28,则该校双休日参加社会实践活动时间在22.5小时之间的学生数大约是全体学生数的百分比为100%=28%故答案为:28%【点睛】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取
18、信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确三、解答题(共7小题,满分69分)18、(1)32(人),25(人);(2);(3)乙同学,见解析.【解析】(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人
19、,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解【详解】解:(1)A超市共有员工:2062.532(人),3608010012060,四个超市女工人数的比为:80:100:120:604:5:6:3,B超市有女工:2025(人);(2)C超市有女工:2030(人)四个超市共有女工:2090(人)从这些女工中随机选出一个,正好是C超市的概率为 (3)乙同学.理由:D超市有女工2015(人),共有员工1575%20(人),再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为75【点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识用到的知识点为:概率=所求情况数与总
20、情况数之比19、(1)详见解析;(2)72;(3)【解析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得【详解】解:(1) 抽 查的总人数为:(人) 类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、,画树状图得:恰好抽到一男一女的情况共有12 种,分别是 (恰好抽到一男一女)【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,
21、读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或【解析】由知,再由知、,据此可得,证即可得;易知四边形ABEF是矩形,设,可得,证得,在中,由,列方程求解可得答案;分点C在AF的左侧和右侧两种情况求解:左侧时由知、,在中,由可得关于m的方程,解之可得;右侧时,由知、,利用勾股定理求解可得作于点G,延长GD交BE于点H,由知,据此可得,再分点D在矩形内部和外部的情况求解可得【详解】如图1,、,四边形ABEF是矩形,设,则,在中,即,解得:,
22、的长为1如图1,当点C在AF的左侧时,则,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,又,且,当点D在矩形ABEF的内部时,由可设、,则,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,则,综上,与面积比为或【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点21、(1)见解析;(2)见解析;(3).【解析】(1)根据P(m,n)移到P(m+6,n+1)可知ABC向右平移6个单位,向上平移了一个单位,由图形
23、平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形即可;(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.【详解】解:(1)平移ABC得到A1B1C1,点P(m,n)移到P(m+6,n+1)处,ABC向右平移6个单位,向上平移了一个单位,A1(4,4),B1(2,0),C1(8,1);顺次连接A1,B1,C1三点得到所求的A1B1C1(2)如图所示:A2B2C即为所求三角形.(3)BC的长为: BC扫过的面积【点睛】本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、(1)A
24、、B两种奖品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=5m+1,当购买A种奖品75件时,费用W的值最少【解析】(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;(2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题【详解】(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:解得:答:A种奖品的单价是10元、B种奖品的单价是15元(2)由题意可得:W=10m+15(100m)
25、=5m+1A种奖品的数量不大于B种奖品数量的3倍,m3(100m),解得:m75当m=75时,W取得最小值,此时W=575+1=2答:W(元)与m(件)之间的函数关系式是W=5m+1,当购买A种奖品75件时,费用W的值最少【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答23、(1)证明见解析;(2)【解析】(1)连接OC,AC,可先证明AC平分BAE,结合圆的性质可证明OCAE,可得OCB90,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明OCB为等边三角形,可求得CF、AB,利
26、用梯形的面积公式可求得答案【详解】(1)证明:连接OC,ACCFAB,CEAD,且CECFCAECABOCOA,CABOCACAEOCAOCAEOCEAEC180,AEC90,OCE90即OCCE,OC是O的半径,点C为半径外端,CE是O的切线(2)解:ADCD,DACDCACAB,DCAB,CAEOCA,OCAD,四边形AOCD是平行四边形,OCADa,AB2a,CAECAB,CDCBa,CBOCOB,OCB是等边三角形,在RtCFB中,CF ,S四边形ABCD (DCAB)CF【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切
27、点时,过圆心作垂直,证明圆心到直线的距离等于半径24、(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出ADB=90,根据直角三角形斜边上中线性质求出DE=BE,推出EDB=EBD,ODB=OBD,即可求出ODE=90,根据切线的判定推出即可(2)首先证明AC=2DE=20,在RtADC中,DC=12,设BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题【详解】(1)证明:连结OD,ACB=90,A+B=90,又OD=OB,B=BDO,ADE=A,ADE+BDO=90,ODE=90DE是O的切线;(2)连结CD,ADE=A,AE=DEBC是O的直径,ACB=90EC是O的切线DE=ECAE=EC,又DE=10,AC=2DE=20,在RtADC中,DC=设BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2202,x2+122=(x+16)2202,解得x=9,BC=.【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.