《甘肃省平凉市庄浪县2023年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省平凉市庄浪县2023年中考数学对点突破模拟试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8107B880108C8.8109D8.810102如图,在ABC中,ACB=90,点D为AB的中
2、点,AC=3,cosA=,将DAC沿着CD折叠后,点A落在点E处,则BE的长为()A5B4C7D53一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米其中正确的个数有()A1个B2个C3个D4个4下列判断错误的是()A两组对边分别相等的四边形是平行四边形B四个内角都相等的四边形是矩形C两条对角线垂直且平分的四边形是正方形D四条边都相等的四边形是菱形5下列
3、各式中,正确的是( )At5t5 = 2t5 Bt4+t2 = t 6 Ct3t4 = t12 Dt2t3 = t56如图,在坐标系中放置一菱形OABC,已知ABC=60,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60,连续翻转2017次,点B的落点依次为B1,B2,B3,则B2017的坐标为()A(1345,0)B(1345.5,)C(1345,)D(1345.5,0)73的绝对值是()A3B3C-D8已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A3B5C1或3D1或59如图,取一张长为、宽为的长方形纸片,将它对折
4、两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是( )ABCD10已知一次函数y=axxa+1(a为常数),则其函数图象一定过象限()A一、二B二、三C三、四D一、四二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式:_12如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上如果它们外缘边上的公共点P在小量角器上对应的度数为65,那么在大量角器上对应的度数为_度(只需写出090的角度)13如图所示一棱长为3cm的正方体,把所有的面均分成33个小正方形其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A
5、沿表面爬行至侧面的B点,最少要用_秒钟14在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 15如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是_.16如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC2,BE1 则cosBEC_三、解答题(共8题,共72分)17(8分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元求每件A种商品和每件B种商品售出后所得利润分别为多少元?
6、由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?18(8分)化简(),并说明原代数式的值能否等于-119(8分)如图,在ABC中,C=90作BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求ABD的面积20(8分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接求证:四边形是菱形若,求四边形的面积21(8分)如图,直线y=x与双曲线y=(k0,x0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k0,x0)交于点B(1
7、)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值22(10分)如图,已知点A,C在EF上,ADBC,DEBF,AECF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AECF除外)23(12分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,求末端操作器节点到地面直线的距离.(结果保留根号)24在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(4,0),B (1,0)两点,与y轴交于点C(1)求这个二次函数的解析式;
8、(2)连接AC、BC,判断ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使PBC周长最小时,点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.81010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2
9、、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可【详解】解:连接AE,AC=3,cosCAB=,AB=3AC=9,由勾股定理得,BC=6,ACB=90,点D为AB的中点,CD=AB=,SABC=36=9,点D为AB的中点,SACD=SABC=,由翻转变换的性质可知,S四边形ACED=9,AECD,则CDAE=9,解得,AE=4,AF=2,由勾股定理得,DF=,AF=FE,AD=DB,BE=2DF=7,故选C【点睛】本题考查的是翻转变换的性质、直角三角形的性质
10、,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等3、D【解析】根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题【详解】由图象可得,出租车的速度为:6006=100千米/时,故(1)正确,客车的速度为:60010=60千米/时,故(2)正确,两车相遇时,客车行驶时间为:600(100+60)=3.75(小时),故(3)正确,相遇时,出租车离甲地的路程为:603.75=225千米,故(4)正确,故选D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答4、C【解析】根据平行四边形的判定,矩形的判定,菱
11、形的判定,正方形的判定,对选项进行判断即可【详解】解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;B、四个内角都相等的四边形是矩形,故本选项正确;C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;D、四条边都相等的四边形是菱形,故本选项正确故选C【点睛】此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键5、D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.6、B【解
12、析】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1画出第5次、第6次、第7次翻转后的图形,如图所示由图可知:每翻转6次,图形向右平移23=3366+1,点B1向右平移1322(即3362)到点B3B1的坐标为(1.5, ),B3的坐标为(1.5+1322,),故选B点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.7、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负
13、数的绝对值是它的相反数.8、A【解析】分析:根据点A(a2,4)和B(3,2a2)到x轴的距离相等,得到4|2a2|,即可解答详解:点A(a2,4)和B(3,2a2)到x轴的距离相等,4|2a2|,a23,解得:a3,故选A点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数9、B【解析】由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,小长方形与原长方形相似,故选B【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比
14、例式是解决此题的关键10、D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:y=axxa+1(a为常数),y=(a-1)x-(a-1)当a-10时,即a1,此时函数的图像过一三四象限;当a-10时,即a1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k0,k、b为常数)的图像与性质:当k0,b0时,图像过一二三象限,y随x增大而增大;当k0,b0时,图像过一三四象限,y随x增大而增大;当k0,b0时,图像过一二
15、四象限,y随x增大而减小;当k0,b0,图像过二三四象限,y随x增大而减小.二、填空题(本大题共6个小题,每小题3分,共18分)11、 (a+1)(a-1)【解析】根据平方差公式分解即可.【详解】(a+1)(a-1).故答案为:(a+1)(a-1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.12、1【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则APB=90,ABP=65,因而PAB=9065=25,在大量角器中弧PB所对的
16、圆心角是1,因而P在大量角器上对应的度数为1故答案为113、2.5秒【解析】把此正方体的点A所在的面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得【详解】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线(1)展开前面右面由勾股定理得ABcm;(2)展开底面右面由勾股定理得AB5cm;所以最短路径长为5cm,用时最少:522.5秒【点睛】本题考查了勾股定理的拓展应用“化曲面为平面”是解决“怎样爬行最近”这类问题的关键14、【解析】试题分析:根据概率
17、的意义,用符合条件的数量除以总数即可,即.考点:概率15、(,)【解析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标【详解】解:正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,OA:OD=2:3,点A的坐标为(1,0),即OA=1,OD=,四边形ODEF是正方形,DE=OD=E点的坐标为:(,)故答案为:(,)【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键16、【解析】分析:连接BC,则BCE90,由余弦的定义求解.详解:连接BC,根据圆周角定理得,BCE9
18、0,所以cosBEC.故答案为.点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.三、解答题(共8题,共72分)17、(1)200元和100元(2)至少6件【解析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34a)件根据获得的利润不低于4000元,建立不等式求出其解即可【详解】解:(1)设A种商品
19、售出后所得利润为x元,B种商品售出后所得利润为y元由题意,得,解得:,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元(2)设购进A种商品a件,则购进B种商品(34a)件由题意,得200a+100(34a)4000,解得:a6答:威丽商场至少需购进6件A种商品18、见解析【解析】先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为1,则=1,截至求得x的值,再根据分式有意义的条件即可作出判断【详解】原式=,若原代数式的值为1,则=1,解得:x=0,因为x=0时,原式没有意义,所以原代数式的值不能等于1【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键1
20、9、(1)答案见解析;(2)【解析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DEABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DEAB于E,AD平分BAC,DE=CD=4,SABD=ABDE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.20、(1)见解析;(2)S四边形ADOE =.【解析】(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到ODAE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平
21、行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有EAB=BAO.根据矩形的性质有ABCD,根据平行线的性质有BAC=ACD,求出DCA=60,求出AD=.根据面积公式SADC,即可求解.【详解】(1)证明:矩形ABCD,OA=OB=OC=OD.平行四边形ADOE,ODAE,AE=OD. AE=OB. 四边形AOBE为平行四边形. OA=OB,四边形AOBE为菱形. (2)解:菱形AOBE,EAB=BAO. 矩形ABCD,ABCD. BAC=ACD,ADC=90. EAB=BAO=DCA. EAO+DCO=180,DCA=60. DC=2,AD=. SADC=. S
22、四边形ADOE =.【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.21、(1)k=b2+4b;(2)【解析】试题分析:(1)分别求出点B的坐标,即可解答(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作ADx轴,BEx轴,CFBE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)将直线y=向上平移4个单位长度后,与y轴交于点C,平移后直线的解析式为y=+4,点B在直线y=+4上,B(b,b+4),点B在双曲线y=上,B(b,),令b+4=得(2)分别
23、过点A、B作ADx轴,BEx轴,CFBE于点F,设A(3x,x),OA=3BC,BCOA,CFx轴,CF=OD,点A、B在双曲线y=上,3bb=,解得b=1,k=311=考点:反比例函数综合题22、(1)见解析;(2)ADBC,ECAF,EDBF,ABDC.【解析】整体分析:(1)用ASA证明ADECBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据ADECBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:ADBC,DEBF,EF,DACBCA,DAEBCF.在ADE和CBF中,ADECBF,ADBC,四边形ABCD是平行四边形(2)A
24、DBC,ECAF,EDBF,ABDC.理由如下:ADECBF,ADBC,EDBF.AECF,ECAF.四边形ABCD是平行四边形,ABDC.23、()cm.【解析】作BGCD,垂足为G,BHAF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BGCD,垂足为G,BHAF,垂足为H,在中,BCD=60,BC=60cm,在中,BAF=45,AB=60cm,D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.24、(1)抛物线解析式为y=x2x+2;(2)ABC为直角三角形,理由见解析;(3)当P点坐标
25、为(,)时,PBC周长最小【解析】(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断ABC为直角三角形;(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标【详解】(1)抛物线的解析式为y=a(x+4)(x1),即y=ax2+3ax4a,4a=2,解得a=,抛
26、物线解析式为y=x2x+2;(2)ABC为直角三角形理由如下:当x=0时,y=x2x+2=2,则C(0,2),A(4,0),B (1,0),AC2=42+22,BC2=12+22,AB2=52=25,AC2+BC2=AB2,ABC为直角三角形,ACB=90;(3)抛物线的对称轴为直线x=,连接AC交直线x=于P点,如图,PA=PB,PB+PC=PA+PC=AC,此时PB+PC的值最小,PBC周长最小,设直线AC的解析式为y=kx+m,把A(4,0),C(0,2)代入得,解得,直线AC的解析式为y=x+2,当x=时,y=x+2=,则P(,)当P点坐标为(,)时,PBC周长最小【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了待定系数法求二次函数解析式和最短路径问题