《珠海市紫荆中学2022-2023学年中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《珠海市紫荆中学2022-2023学年中考数学考前最后一卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系下列叙述错误的是()AAB两地相距1000千米B两车出发后3小时相遇C动车的速度为D普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地2如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A(1,1)B(2,1)C(2,2)D(3,1)3估计+1的值在()A2和
3、3之间B3和4之间C4和5之间D5和6之间4如图,直线ab,一块含60角的直角三角板ABC(A60)按如图所示放置若155,则2的度数为()A105B110C115D1205若关于x的一元二次方程x22xk0没有实数根,则k的取值范围是( )Ak1Bk1Ck1Dk16已知A(x1,y1),B(x2,y2)是反比例函数y(k0)图象上的两个点,当x1x20时,y1y2,那么一次函数ykxk的图象不经过()A第一象限 B第二象限 C第三象限 D第四象限7甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A甲超市的利润逐月减少B乙超市的利润在1月至4月间逐月增加C8月份两家超
4、市利润相同D乙超市在9月份的利润必超过甲超市8在ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )A5B7C9D119甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:甲、乙两班学生的平均成绩相同;乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀);甲班成绩的波动比乙班大上述结论中,正确的是()ABCD10如图,在中,点D、E、F分别在边、上,且,下列四种说法: 四边形是平行四
5、边形;如果,那么四边形是矩形;如果平分,那么四边形是菱形;如果且,那么四边形是菱形. 其中,正确的有( ) 个A1B2C3D4二、填空题(共7小题,每小题3分,满分21分)11在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是_12某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带_kg的行李13已知图中RtABC,B=90,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转 (0 360),得到线
6、段AC,连接DC,当DC/BC时,旋转角度 的值为_,14如图,在RtABC中,ACB=90,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为_15无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_秒16如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y(x0)的图象经过菱形OABC中心E点,则k的值为_17分解因式:x2yy_三、解答题(共7小题,满分69分)18(10分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30,看这栋楼底部C处的俯角为60,热气球
7、与楼的水平距离AD为100米,试求这栋楼的高度BC19(5分)如图,已知ABCD的面积为S,点P、Q时是ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论:“E是BC中点” .乙得到结论:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.20(8分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(4,n)两点分别求出一次函数与反比例函数的表达式;过点B作BCx轴,垂足为点C,连接AC,求ACB的面积21(10分)已知a,b,c为ABC的三边,且满足a2c2b2c2a4
8、b4,试判定ABC的形状22(10分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FGBE交AE于点G(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O求证:FOED=ODEF23(12分)如图,在ABC中,BC12,tanA,B30;求AC和AB的长24(14分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后, 能被x0+3整除,能被x0+n1整除,则称这个n位数是x0的一个“轮换数”例如
9、:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+
10、 V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.2、B【解析】直接利用已知点坐标建立平面直角坐标系进而得出答案【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:棋子“炮”的坐标为(2,1),故答案为:B【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键3、B【解析】分析:直接利用23,进而得出答案详解:23,3+14,故选B点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键4、C【解析】如图,首先证明AMO=2,然后运用对顶角的性质求出ANM=55;借助三角形外角的性质求出AMO即可解决问题【详
11、解】如图,对图形进行点标注.直线ab,AMO=2;ANM=1,而1=55,ANM=55,2=AMO=A+ANM=60+55=115,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.5、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根6、B【解析】试题分析:当x1x20时,y1y2,可判定k0,所以k0,即可判定一次函数y=kxk的图象经过第一、
12、三、四象限,所以不经过第二象限,故答案选B考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系7、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上升或下降来表示统计数量增减变化8、B【解析】试题解析:D
13、、E、F分别为AB、BC、AC中点,DF=BC=2,DFBC,EF=AB=,EFAB,四边形DBEF为平行四边形,四边形DBEF的周长=2(DF+EF)=2(2+)=1故选B9、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大故正确,故选D点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型10、D【解析】先由两组对边分别平行的四边形为平行四边形,根据DECA,DFBA,得出AEDF为平行四边形,得出正确;当B
14、AC=90,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出正确;若AD平分BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得EAD=EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出正确;由AB=AC,ADBC,根据等腰三角形的三线合一可得AD平分BAC,同理可得四边形AEDF是菱形,正确,进而得到正确说法的个数【详解】解:DECA,DFBA,四边形AEDF是平行四边形,选项正确;若BAC=90,平行四边形AEDF为矩形,选项正确;若AD平分BAC,EAD=FAD,又DECA,EDA=FAD,EAD=EDA,AE
15、=DE,平行四边形AEDF为菱形,选项正确;若AB=AC,ADBC,AD平分BAC,同理可得平行四边形AEDF为菱形,选项正确,则其中正确的个数有4个故选D【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率.【详解】袋子中有3个白球和2个红球,一共5个球,所以从中任意摸出一个球是红球的概率为:,故答案为.【点睛】本题考查
16、了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.12、2【解析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,解得, ,则y=30x-1当y=0时,30x-1=0,解得:x=2故答案为:2【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键13、15或255【解析】如下图,设直线DC与AB相交于点E,RtABC中,B=90,AB=BC,DC/BC,AED=A
17、BC=90,ADE=ACB=BAC=45,AB=AC,AE=AD,又AD=AB,AC=AC,AE=AB=AC=AC,C=30,EAC=60,CAC=60-45=15, 即当DCBC时,旋转角=15;同理,当DCBC时,旋转角=180-45-60=255;综上所述,当旋转角=15或255时,DC/BC.故答案为:15或255.14、5【解析】已知CD是RtABC斜边AB的中线,那么AB=2CD;EF是ABC的中位线,则EF应等于AB的一半【详解】ABC是直角三角形,CD是斜边的中线,CD= AB,又EF是ABC的中位线,AB=2CD=25=10,EF=10=5.故答案为5.【点睛】本题主要考查三
18、角形中位线定理, 直角三角形斜边上的中线,熟悉掌握是关键.15、5 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.005=510-1,故答案为:510-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定16、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,
19、点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.17、y(x+1)(x1)【解析】观察原式x2yy,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2yyy(x21)y(x+1)(x1)故答案为:y(x+1)(x1)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止三
20、、解答题(共7小题,满分69分)18、这栋楼的高度BC是米【解析】试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长试题解析:解:,AD100, 在Rt中, 在Rt中,. 点睛:本题考查解直角三角形的应用仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系19、结论一正确,理由见解析;结论二正确,S四QEFP= S【解析】试题分析:(1)由已知条件易得BEQDAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由
21、此即可说明甲同学的结论成立;(2)同(1)易证点F是CD的中点,由此可得EFBD,EF=BD,从而可得CEFCBD,则可得得到SCEF=SCBD=S平行四边形ABCD=S,结合S四边形AECF=S可得SAEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合AQPAEF可得SAQP=SAEF=,由此可得S四边形QEFP= SAEF- SAQP=S,从而说明乙的结论正确;试题解析:甲和乙的结论都成立,理由如下:(1)在平行四边形ABCD中,ADBC,BEQDAQ,又点P、Q是线段BD的三等分点,BE:AD=BQ:DQ=1:2,AD=BC,BE:BC=1:2,点E是BC的中点,即结论正确;
22、(2)和(1)同理可得点F是CD的中点,EFBD,EF=BD,CEFCBD,SCEF=SCBD=S平行四边形ABCD=S,S四边形AECF=SACE+SACF=S平行四边形ABCD=S,SAEF=S四边形AECF-SCEF=S,EFBD, AQPAEF,又EF=BD,PQ=BD,QP:EF=2:3,SAQP=SAEF=,S四边形QEFP= SAEF- SAQP=S-=S,即结论正确.综上所述,甲、乙两位同学的结论都正确.20、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)ACB的面积为1【解析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标
23、可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得【详解】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=4时,y=2,则点B(4,2),将点A(2,4)、B(4,2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则ACB的面积=21=1【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键21、等腰直角三角形【解析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断ABC的形状【详解】解:a2c2b2c2=
24、a4b4,a4b4a2c2+b2c2=0,(a4b4)(a2c2b2c2)=0,(a2+b2)(a2b2)c2(a2b2)=0,(a2+b2c2)(a2b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即ABC为直角三角形或等腰三角形或等腰直角三角形考点:勾股定理的逆定理22、(1)证明见解析;(2)AG=;(3)证明见解析.【解析】(1)根据正方形的性质得到ADBC,ABCD,ADCD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BMBE,得到GFFH
25、,由GFAD,得到,等量代换得到,即,于是得到结论【详解】解:(1)四边形ABCD是正方形,ADBC,ABCD,AD=CD,GFBE,GFBC,GFAD,ABCD,AD=CD,GF=BF;(2)EB=1,BC=4,=4,AE=,=4,AG=;(3)延长GF交AM于H,GFBC,FHBC,BM=BE,GF=FH,GFAD, ,FOED=ODEF【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等23、8+6【解析】如图作CHAB于H在RtBHC求出CH、BH,在RtACH中求出AH、AC即可解决问题;【详解】解:
26、如图作CHAB于H在RtBCH中,BC12,B30,CHBC6,BH6,在RtACH中,tanA,AH8,AC10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型24、 (1)见解析;(2) 201,207,1【解析】试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;(2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可试题解析:(1)设两位自然数的十位数字为x,则个位数字为2x,这个两位自然数是10x+2x=
27、12x,这个两位自然数是12x能被6整除,依次轮换个位数字得到的两位自然数为102x+x=21x轮换个位数字得到的两位自然数为21x能被7整除,一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”(2)三位自然数是3的一个“轮换数”,且a=2,100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,100c+b+20能被5整除,b+20的个位数字不是0,便是5,b=0或b=5,当b=0时,100b+10c+2能被4整除,10c+2能被4整除,c只能是1,3,5,7,9;这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,这个三位自然数为201,207,当b=5时,100b+10c+2能被4整除,10c+502能被4整除,c只能是1,5,7,9;这个三位自然数可能是为251,1,257,259,而251,257,259不能被3整除,这个三位自然数为1,即这个三位自然数为201,207,1【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值