《湖南省长沙市雅实校2022-2023学年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市雅实校2022-2023学年中考联考数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2B1:3C1:4D1:12设x1,x2是一元二次方程x22x3=0的两根,则x12+x22=( )A6 B8 C10 D1233
2、的倒数是( )ABCD4如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD5如图,若ABCD,则、之间的关系为()A+=360B+=180C+=180D+=1806若关于,的二元一次方程组的解也是二元一次方程的解,则的值为ABCD7如图,BDAC,BE平分ABD,交AC于点E,若A=40,则1的度数为()A80B70C60D408不等式组的正整数解的个数是()A5B4C3D29在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )ABCD10下列命题正确的是( )A
3、内错角相等 B1是无理数C1的立方根是1 D两角及一边对应相等的两个三角形全等二、填空题(共7小题,每小题3分,满分21分)11如图,中,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_12如图,已知O1与O2相交于A、B两点,延长连心线O1O2交O2于点P,联结PA、PB,若APB=60,AP=6,那么O2的半径等于_13分解因式:4a2-4a+1=_14已知正比例函数的图像经过点M( )、,如果,那么_(填“”、“”、“”)15因式分解:_16化简;(1)=_17不等式-1的正整数解为_.三、解答题(共7小题,满分69分)18(10分)在平面直角坐标系中,已知抛物线经过A(4,
4、0),B(0,4),C(2,0)三点(1)求抛物线解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,MOA的面积为S求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?(3)若点Q是直线y=x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标19(5分)计算:(-)-2 2()+ 20(8分)如图,D为O上一点,点C在直径BA的延长线上,且CDACBD(1)求证:CD是O的切线;(2)过点B作O的切线交CD的延长线于点E,BC6,求BE的长21(10分)已知如图,在ABC中
5、,B45,点D是BC边的中点,DEBC于点D,交AB于点E,连接CE(1)求AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论22(10分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x60,60x70,70x80,80x90,90x100):A、B两班学生测试成绩在80x90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89
6、89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6m96.9B班80.8n153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析)23(12分)先化简(x-),然后从-x【解析】分析:根据正比例函数的图象经过点M(1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题详解:设该正比例函数的解析式为y=kx,则1=1k,
7、得:k=0.5,y=0.5x正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1x1,y1y1故答案为点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答15、【解析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解【详解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1故答案为:x(y+1)1【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止16、-【解析】直接利用分式的混合运算法则即可得出.【详解】原式,.故答案为.
8、【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.17、1, 2, 1.【解析】去分母,移项,合并同类项,系数化成1即可求出不等式的解集,根据不等式的解集即可求出答案【详解】, 1-x-2, -x-1, x1, 不等式的正整数解是1,2,1, 故答案为:1,2,1【点睛】本题考查了解一元一次不等式和一元一次不等式的整数解,关键是求出不等式的解集.三、解答题(共7小题,满分69分)18、(1)y=x2+x4;(2)S关于m的函数关系式为S=m22m+8,当m=1时,S有最大值9;(3)Q坐标为(4,4)或(2+2,22)或(22,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边
9、形【解析】(1)设抛物线解析式为y ax2 bx c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,抛物线经过A(4,0),B(0,4),C(2,0),解得,抛物线解析式为y=x2+x4;(2)点M的横坐标为m
10、,点M的纵坐标为m2+m4,又A(4,0),AO=0(4)=4,S=4|m2+m4|=(m2+2m8)=m22m+8,S=(m2+2m8)=(m+1)2+9,点M为第三象限内抛物线上一动点,当m=1时,S有最大值,最大值为S=9;故答案为S关于m的函数关系式为S=m22m+8,当m=1时,S有最大值9;(3)点Q是直线y=x上的动点,设点Q的坐标为(a,a),点P在抛物线上,且PQy轴,点P的坐标为(a,a2+a4),PQ=a(a2+a4)=a22a+4,又OB=0(4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,|PQ|=OB,即|a22a+4|=4,a22a+4=4时,整理得,a2
11、+4a=0,解得a=0(舍去)或a=4,a=4,所以点Q坐标为(4,4),a22a+4=4时,整理得,a2+4a16=0,解得a=22,所以点Q的坐标为(2+2,22)或(22,2+2),综上所述,Q坐标为(4,4)或(2+2,22)或(22,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形【点睛】本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.19、0【解析】本题涉及负指数幂、二次根式化简和绝对值3个考点在计算时,需要针对每个考点分别进
12、行计算,然后根据实数的运算法则求得计算结果【详解】原式.【点睛】本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.20、(1)证明见解析;(2).【解析】试题分析:连接OD.根据圆周角定理得到ADOODB90,而CDACBD,CBDBDO.于是ADOCDA90,可以证明是切线. 根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论试题解析:(1)连接OD.OBOD,OBDBDO.CDACBD,CDAODB.又AB是O的直径,ADB90,ADOODB90,ADOCDA90,即CDO90,ODCD.OD是O的半径,CD是O的切线;(2)CC,CDA
13、CBD,CDACBD,BC6,CD4.CE,BE是O的切线,BEDE,BEBC,BE2BC2EC2,即BE262(4BE)2,解得BE.21、(1)90;(1)AE1+EB1AC1,证明见解析【解析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答【详解】解:(1)点D是BC边的中点,DEBC,DE是线段BC的垂直平分线,EBEC,ECBB45,AECECB+B90;(1)AE1+EB1AC1AEC90,AE1+EC1AC1,EBEC,AE1+EB1AC1【点睛】本题考查的是线段垂直平分线
14、的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键22、(1)见解析;(2)m=81,n=85;(3)略.【解析】(1)先求出B班人数,根据两班人数相同可求出A班70x80组的人数,补全统计图即可;(2)根据中位数的定义求解即可;(3)可以从中位数和方差的角度分析,合理即可.【详解】解:(1)A、B两班学生人数=5+2+3+22+8=40人,A班70x80组的人数=40-1-7-13-9=10人,A、B两班学生数学成绩频数分布直方图如下:(2)根据中位数的定义可得:m=81,n=85;(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;从方差的角度看,A
15、班学生的数学成绩比B班学生的数学成绩稳定.【点睛】本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.23、当x=1时,原式=; 当x=1时,原式=【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算【详解】原式= = =-x,且x为整数,若使分式有意义,x只能取-1和1当x=1时,原式=或:当x=-1时,原式=124、(1)150人;(2)补图见解析;(3)144;(4)300盒【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有3020%150人;(2)C类别人数为150(30+45+15)60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360144故答案为144(4)600()300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.