《湖南省长沙市教科所2023年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市教科所2023年中考二模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A2人B16人C20人D40人2如图,在ABC中,AB=AC=10,CB=16,分别以A
2、B、AC为直径作半圆,则图中阴影部分面积是()A5048B2548C5024D3为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()ABCD4的绝对值是()ABCD56的相反数为A-6B6CD6若(x1)01成立,则x的取值范围是()Ax1Bx1Cx0Dx17如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )ABCD8如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BCCDDA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动设P点运动时间为x(s),B
3、PQ的面积为y(cm2),则y关于x的函数图象是( )ABCD9二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x-1时,y的值随x值的增大而增大.其中正确的结论有( )A1个B2个C3个D4个10观察下列图案,是轴对称而不是中心对称的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知x+y8,xy2,则x2y+xy2_12若方程x24x+10的两根是x1,x2,则x1(1+x2)+x2的值为_13如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别
4、交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:BE=2AE;DFPBPH;PFDPDB;DP2=PHPC其中正确的是_(填序号)14分解因式=_,=_15化简3m2(mn)的结果为_16两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有_千米.三、解答题(共8题,共72分)17(8分
5、)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围18(8分)如图,AD、BC相交于点O,ADBC,CD90求证:ACBBDA;若ABC36,求CAO度数19(8分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)点E在抛物线的对称轴上,且,求点E的坐标;(3)在(2)
6、的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,求点Q的坐标. 20(8分)已知,如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E求证:DE是O的切线;若DE=6cm,AE=3cm,求O的半径21(8分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当FAB=EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时
7、,求菱形对角线MN的长22(10分)如图,AB为O直径,过O外的点D作DEOA于点E,射线DC切O于点C、交AB的延长线于点P,连接AC交DE于点F,作CHAB于点H(1)求证:D=2A;(2)若HB=2,cosD=,请求出AC的长23(12分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90得到线段BC,抛物线y=ax2+bx+c经过点C(1)如图1,若抛物线经过点A和D(2,0)求点C的坐标及该抛物线解析式;在抛物线上是否存在点P,使得POB=BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y
8、=ax2+bx+c(a0)经过点E(2,1),点Q在抛物线上,且满足QOB=BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围24如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角ACB=75,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m求篮板底部支架HE与支架AF所成的角FHE的度数求篮板顶端F到地面的距离(结果精确到0.1 m;参考数据:cos750.2588,sin750.9659,tan753.732,1.732,1.414)参考答案一、选择题(共10小题,每小题3分
9、,共30分)1、C【解析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值【详解】400人.故选C【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值2、B【解析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,ADBC,BD=DC=BC=8,而AB=AC=10,CB=16,AD=6,阴影部分面积=半圆AC的面积+半圆AB的面积ABC的面积,=52166,=251故选B3、C【解析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是
10、轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误故选:C【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.4、C【解析】根据负数的绝对值是它的相反数,可得答案【详解】-=,A错误;-=,B错误;=,D错误;=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.5、A【解析】根据相反数的定义进行求解.【详解】1的相反数为:1故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.6、D【解析】试题解析:由题意可知:x-10,x1故选D.7、B
11、【解析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键8、C【解析】试题分析:由题意可得BQ=x0x1时,P点在BC边上,BP=3x,则BPQ的面积=BPBQ,解y=3xx=;故A选项错误;1x2时,P点在CD边上,则BPQ的面积=BQBC,解y=x3=;故B选项错误;2x3时,P点在AD边上,AP=93x,则BPQ的面积=APBQ,解y=(93x)x=;故D选项错误故选C考点:动点问题的函数图象9、B【解析】
12、根据抛物线的对称轴即可判定;观察图象可得,当x=-3时,y0,由此即可判定;观察图象可得,当x=1时,y0,由此即可判定;观察图象可得,当x2时,的值随值的增大而增大,即可判定.【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,正确;观察图象可得,当x=-3时,y0,即9a-3b+c0,所以,错误;观察图象可得,当x=1时,y0,即a+b+c0,正确;观察图象可得,当x2时,的值随值的增大而增大,错误综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时
13、,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点10、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形
14、,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形这个旋转点,就叫做对称中心二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值【详解】x+y=8,xy=2,x2y+xy2=xy(x+y)=28=1故答案为:1【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式12、5【解析】由题意得, ,.原式 13、【解析】由正方形的性质和相似三角形的判
15、定与性质,即可得出结论【详解】BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90ABE=DCF=30,BE=2AE;故正确;PC=CD,PCD=30,PDC=75,FDP=15,DBA=45,PBD=15,FDP=PBD,DFP=BPC=60,DFPBPH;故正确;FDP=PBD=15,ADB=45,PDB=30,而DFP=60,PFDPDB,PFD与PDB不会相似;故错误;PDH=PCD=30,DPH=DPC,DPHCPD,DP2=PHPC,故正确;故答案是:【点睛】本题考查的正方形的性质,等边三角形的性质以及相
16、似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理14、 【解析】此题考查因式分解答案点评:利用提公因式、平方差公式、完全平方公式分解因式15、m+2n【解析】分析:先去括号,再合并同类项即可得详解:原式=3m-2m+2n=m+2n,故答案为:m+2n点睛:本题主要考查整式的加减,解题的关键是掌握去括号与合并同类项的法则16、90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲
17、车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,452=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.三、解答题(共8题,共72分)17、(1)y=-2x+31,(2)20x1【
18、解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得: 解得: y与x的函数解析式为y=-2x+31,(2) 试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,自变量x的取值范围是20x118、(1)证明见解析(2)18【解析】(1)根据HL证明RtABCRtBAD即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可【详解
19、】(1)证明:DC90,ABC和BAD都是Rt,在RtABC和RtBAD中,RtABCRtBAD(HL);(2)RtABCRtBAD,ABCBAD36,C90,BAC54,CAOCABBAD18【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”19、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.【解析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的
20、定义得到,即,然后解方程求出m即可得到Q点坐标.【详解】解:(1)抛物线解析式为,即,顶点P的坐标为;(2)抛物线的对称轴为直线,设,解得,E点坐标为;(3)直线交x轴于F,作MN直线x=2于H,如图,而,设,则,在中,整理得,解得(舍去),Q点的坐标为.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.20、解:(1)证明见解析;(2)O的半径是7.5cm【解析】(1)连接OD,根据平行线的判断方法与性质可得ODE=DEM=90,且D在O上,故DE是O的切线(2)
21、由直角三角形的特殊性质,可得AD的长,又有ACDADE根据相似三角形的性质列出比例式,代入数据即可求得圆的半径【详解】(1)证明:连接ODOA=OD,OAD=ODAOAD=DAE,ODA=DAEDOMNDEMN,ODE=DEM=90即ODDED在O上,OD为O的半径,DE是O的切线(2)解:AED=90,DE=6,AE=3,连接CDAC是O的直径,ADC=AED=90CAD=DAE,ACDADE则AC=15(cm)O的半径是7.5cm考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质21、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3)
22、菱形对角线MN的长为或. 【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,FAB=EDB, tanFAG=tanBDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.详解:(1)OB=OC=1,B(1,0),C(0,-1).,解得,抛物线的解析式为. =,点D的坐标为(2,-8). (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FGx轴于点G,易求得OA=2,则AG=x+2,FG=.FAB=EDB,tanFAG=tanBDE,即,解得,(舍去).当x=7时,y=,点F的坐标为(7,). 当点F在x轴下方时,设同理求得
23、点F的坐标为(5,).综上所述,点F的坐标为(7,)或(5,). (3)点P在x轴上,根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.PQ=MN,MT=2PT.设TP=n,则MT=2n. M(2+2n,n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.当MN在x轴下方时,设TP=n,得M(2+2n,-n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.综上所述,菱形对角线MN的长为或. 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,yax2bxc().列方程组求二次函数解析式.(2)已知二次函数与x轴
24、的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.22、(1)证明见解析;(2)AC=4.【解析】(1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可【详解】(1)连接射线切于点,由圆周角定理得:,;(2)由(1)可知:,设的半径为,则,在中,由勾股定理可知:,在中,由
25、勾股定理可知:【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键23、(1)y=x2+x+3;P( ,)或P( ,);(2) a1;【解析】(1)先判断出AOBGBC,得出点C坐标,进而用待定系数法即可得出结论;分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)的方法,借助图象即可得出结论【详解】(1)如图2,A(1,3),B(1,1),OA=3,OB=1,由旋转知,ABC=91,AB=CB,ABO+CBE=91,过点C作CGOB于G,CBG+BCG=91,ABO=BCG,AOBGBC,CG=
26、OB=1,BG=OA=3,OG=OB+BG=4C(4,1),抛物线经过点A(1,3),和D(2,1),抛物线解析式为y=x2+x+3;由知,AOBEBC,BAO=CBF,POB=BAO,POB=CBF,如图1,OPBC,B(1,1),C(4,1),直线BC的解析式为y=x,直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍)P(,);在直线OP上取一点M(3,1),点M的对称点M(3,1),直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍),P(,);(2)同(1)的方法,如图3,抛物线y=ax2+bx+c经过点C(4,1),E(2,1),抛物
27、线y=ax26ax+8a+1,令y=1,ax26ax+8a+1=1,x1x2=符合条件的Q点恰好有2个,方程ax26ax+8a+1=1有一个正根和一个负根或一个正根和1,x1x2=1,a1,8a+11,a,即:a1【点睛】本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.24、(1)FHE60;(2)篮板顶端 F 到地面的距离是 4.4 米【解析】(1)直接利用锐角三角函数关系得出cosFHE=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】(1 )由题意可得:cosFHE,则FHE60;(2)延长 FE 交 CB 的延长线于 M,过 A 作 AGFM 于 G, 在 RtABC 中,tanACB,ABBCtan750.603.7322.2392,GMAB2.2392,在 RtAGF 中,FAGFHE60,sinFAG,sin60,FG2.17(m),FMFG+GM4.4(米),答:篮板顶端 F 到地面的距离是 4.4 米【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.