《湖南省长沙市宁乡县重点达标名校2023年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市宁乡县重点达标名校2023年中考数学最后冲刺浓缩精华卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若一个多边形的内角和为360,则这个多边形的边数是( )A3B4C5D62如图,在ABC中,ACB=
2、90,点D为AB的中点,AC=3,cosA=,将DAC沿着CD折叠后,点A落在点E处,则BE的长为()A5B4C7D53若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B14C15D254甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:甲步行的速度为60米/分;乙走完全程用了32分钟;乙用16分钟追上甲;乙到达终点时,甲离终点还有300米其中正确的结论有()A1个B2个C3个D4个5若关于x的一元二次方程(k1)x2+2x
3、2=0有两个不相等的实数根,则k的取值范围是()AkBkCk且k1Dk且k16我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()AB2CD7下列二次根式中,为最简二次根式的是()ABCD8图1和图2中所有的正方形都全等,将图1的正方形放在图2中的某一位置,所组成的图形不能围成正方体的位置是()ABCD9在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同通过多次摸球实验后发现,摸到红球的频率
4、稳定在25%附近,则口袋中白球可能有( )A16个B15个C13个D12个10如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A B1 C D11用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A4B6C16D812如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,点A在双曲线y的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC2AB,点E在线段AC上,且AE3EC,点D为OB的中点,若ADE的面积为3,则k的值为
5、_14已知a、b满足a2+b28a4b+20=0,则a2b2=_15已知A(4,y1),B(1,y2)是反比例函数y=图象上的两个点,则y1与y2的大小关系为_16甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过_秒,甲乙两点第一次在同一边上17函数y= 中,自变量x的取值范围是 _18三角形的每条边的长都是方程的根,则三角形的周长是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间
6、进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间20(6分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C(1)求双曲线解析式;(2)点P在x轴上,如果ACP的面积为5,求点P的坐标.21(6分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜
7、欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数22(8分)计算: + 2018023(8分)化简(),并说明原代数式的值能否等于-124(10分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图请根据以上信息,完成下列问题
8、:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率25(10分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间26(12分)如图所示,AC=AE,1=
9、2,AB=AD求证:BC=DE27(12分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整)请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)
10、180=360, 解得n=4; 故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.2、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可【详解】解:连接AE,AC=3,cosCAB=,AB=3AC=9,由勾股定理得,BC=6,ACB=90,点D为AB的中点,CD=AB=,SABC=36=9,点D为AB的中点,SACD=SABC=,由翻转变换的性质可知,S四边形ACED=9,AECD,则CDAE=9,解得,AE=4,AF=2,由勾股定理得,D
11、F=,AF=FE,AD=DB,BE=2DF=7,故选C【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等3、C【解析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】三角形的两边长分别为5和7,2第三条边12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.4、A【解析】【分析】根据题意和函数图象中的数据可以判断
12、各个小题中的结论是否正确,从而可以解答本题【详解】由图可得,甲步行的速度为:2404=60米/分,故正确,乙走完全程用的时间为:2400(166012)=30(分钟),故错误,乙追上甲用的时间为:164=12(分钟),故错误,乙到达终点时,甲离终点距离是:2400(4+30)60=360米,故错误,故选A【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.5、C【解析】根据题意得k-10且=2-4(k-1)(-2)0,解得:k且k1故选C【点睛】本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac,关键是熟练掌握:当0,方程有两个不相等的实数根;
13、当=0,方程有两个相等的实数根;当0,方程没有实数根6、C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=611sin60=故选C【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答7、B【解析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).【详解】A. =3, 不是最简二次根式;
14、B. ,最简二次根式; C. =,不是最简二次根式; D. =,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.8、A【解析】由平面图形的折叠及正方体的表面展开图的特点解题【详解】将图1的正方形放在图2中的的位置出现重叠的面,所以不能围成正方体,故选A【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形注意:只要有“田”字格的展开图都不是正方体的表面展开图9、D【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】解:设白球个数为:x个,摸到红色球的频率稳定在25%左右
15、,口袋中得到红色球的概率为25%, ,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个故选:D【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键10、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线即可求出.【详解】ACB=90,A=30, BC=AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=AB= 4=2. E,F分别为AC,AD的中点, EF是ACD的中位线. EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位
16、线定理.11、A【解析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8,底面半径=82【详解】解:由题意知:底面周长=8,底面半径=82=1故选A【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长12、C【解析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上
17、面看所得到的图形;二、填空题:(本大题共6个小题,每小题4分,共24分)13、.【解析】由AE3EC,ADE的面积为3,可知ADC的面积为4,再根据点D为OB的中点,得到ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,),从而表示出梯形BOCA的面积关于k的等式,求解即可.【详解】如图,连接DC,AE=3EC,ADE的面积为3,CDE的面积为1.ADC的面积为4.点A在双曲线y的第一象限的那一支上,设A点坐标为 (x,).OC2AB,OC=2x.点D为OB的中点,ADC的面积为梯形BOCA面积的一半,梯形BOCA的面积为8.梯形BOCA的面积=,解得.【点睛】反比例
18、函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.14、1【解析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可【详解】a2+b28a4b+20=0,a28a+16+b24b+4=0,(a4)2+(b2)2=0a4=0,b2=0,a=4,b=2,则a2b2=164=1,故答案为1【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键15、y1y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题详解:反比例函数y=-,-40,在每个象
19、限内,y随x的增大而增大,A(-4,y1),B(-1,y1)是反比例函数y=-图象上的两个点,-4-1,y1y1,故答案为:y1y1点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答16、1【解析】试题分析:设x秒时,甲乙两点相遇根据题意得:10x-5x=250,解得:x=50,相遇时甲走了250m,乙走了500米, 则根据题意推得第一次在同一边上时可以为117、x【解析】该函数是分式,分式有意义的条件是分母不等于1,故分母x11,解得x的范围【详解】解:根据分式有意义的条件得:2x+31解得:故答案为【点睛】本题考查了函数自变量取值范围的求法
20、要使得本题函数式子有意义,必须满足分母不等于118、6或2或12【解析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算【详解】由方程,得=2或1当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2综上所述此三角形的周长是6或12或2三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(4)500;(4)440,作图见试题解析;(4)4.4【解析】(4)利用0
21、.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,本次调查共抽样了500名学生; (4)4.5小时的人数为:5004.4=440(人),如图所示:(4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时考点:4频数(率)分布直方图;4扇形统计图;4加权平均数20、(1);(2)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把
22、A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或21、 (1)200;(2)见解析;(3)126;(4)240人【解析】(1)根据文史类的人数以及文史类所占的百分比即可求
23、出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)喜欢文史类的人数为76人,占总人数的38%,此次调查的总人数为:7638%200人,故答案为200;(2)喜欢生活类书籍的人数占总人数的15%,喜欢生活类书籍的人数为:20015%30人,喜欢小说类书籍的人数为:20024763070人,如图所示:(3)喜欢社科类书籍的人数为:24人,喜欢社科类书籍的人数占了总人数的百分比为:100%12%,喜欢小说类书籍的人数占了
24、总分数的百分比为:100%15%38%12%35%,小说类所在圆心角为:36035%126;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:200012%240人【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键22、2【解析】根据实数的混合运算法则进行计算.【详解】解:原式= -( -1)+1=- +1+1=2【点睛】此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.23、见解析【解析】先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为1,则=1,截至求得x的值,再根据
25、分式有意义的条件即可作出判断【详解】原式=,若原代数式的值为1,则=1,解得:x=0,因为x=0时,原式没有意义,所以原代数式的值不能等于1【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键24、(1)50人;(2)补图见解析;(3). 【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得详解:(1)该班学生总数为1020%=50人;(2)历史学科的人数为50(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生
26、物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率25、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分【
27、解析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可【详解】解:(1)根据题意可得小明的速度为:4500(10+5)300(米/分),30051500(米),两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(45001500)(3510)120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x10)4500500,解得x答:小丽离距离图书馆500m时所用的时间为分【点睛】本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键26、证明见解析.
28、 【解析】试题分析:由可得则可证明,因此可得试题解析:即,在和中,考点:三角形全等的判定27、(1)见解析;(2)1;(3)估计全校达标的学生有10人【解析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数不合格人数的百分比,继而求出成绩优秀的人数(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200成绩达标的学生所占的百分比【详解】解:(1)成绩一般的学生占的百分比=120%50%=30%,测试的学生总数=2420%=120人,成绩优秀的人数=12050%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1(3)1200(50%+30%)=10(人)答:估计全校达标的学生有10人