《黑龙江省齐齐哈尔市铁锋区2022-2023学年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省齐齐哈尔市铁锋区2022-2023学年中考三模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1下列美丽的图案中,不是轴对称图形的是( )ABCD2等腰中,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )A40B46C48D503如图,以O
2、为圆心的圆与直线交于A、B两点,若OAB恰为等边三角形,则弧AB的长度为( )ABCD4孙子算经是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )ABCD5如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )ABCD6抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所
3、示:x21012y04664从上表可知,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在对称轴左侧部分是上升的7如图,BCAE于点C,CDAB,B55,则1等于()A35B45C55D258一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()ABCD9通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A8B8C12D1210我们知道:四边形具有不稳定性如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上
4、,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D处,则点C的对应点C的坐标为()A(,2)B(4,1)C(4,)D(4,)二、填空题(本大题共6个小题,每小题3分,共18分)11在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m1,7),若线段AB与直线y2x1相交,则m的取值范围为_12已知平面直角坐标系中的点A (2,4)与点B关于原点中心对称,则点B的坐标为_13如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()AC的长等于_;()在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并
5、简要说明点D的位置是如何找到的(不要求证明)_14如图,ABC内接于O,AB是O的直径,点D在圆O上,BDCD,AB10,AC6,连接OD交BC于点E,DE_15在平面直角坐标系xOy中,点A、B为反比例函数 (x0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x0)的图象绕原点O顺时针旋转90,A点的对应点为A,B点的对应点为B此时点B的坐标是_16圆锥的底面半径为6,母线长为10,则圆锥的侧面积为_cm2三、解答题(共8题,共72分)17(8分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线(1)判断直线l与圆O的关系,并说明理由;(2)若的平分线BF交A
6、D于点F,求证:;(3)在(2)的条件下,若,求AF的长18(8分)已知关于 的方程mx2+(2m-1)x+m-1=0(m0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.19(8分)问题提出(1)如图1,正方形ABCD的对角线交于点O,CDE是边长为6的等边三角形,则O、E之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安
7、农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MNAD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离20(8分)如图,AB是O直径,BCAB于点B,点C是射线BC上任意一点,过点C作CD切O于点D,连接AD求证:BCCD;若C60,BC3,求AD的长21(8分)如图,已知AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,
8、不写作法)22(10分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0a5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?23(12分)阅
9、读下面材料,并解答问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式解:由分母为x2+1,可设x4x2+3=(x2+1)(x2+a)+b则x4x2+3=(x2+1)(x2+a)+b=x4ax2+x2+a+b=x4(a1)x2+(a+b)对应任意x,上述等式均成立,a=2,b=1=+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式试说明的最小值为124随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学
10、生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_名学生,最喜欢用电话沟通的所对应扇形的圆心角是_;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C
11、、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、C【解析】CEBD,BEF=90,BAC=90,CAF=90,FAC=BAD=90,ABD+F=90,ACF+F=90,ABD=ACF,又ABAC,ABDACF,AD=AF,AB=AC,D为AC中点,AB=AC=2AD=2AF,BF=AB+AF=12,3AF=12,AF=4,AB=AC=2AF=8,SFBC= BFAC=128=48,故选C3、C【解析】过点作, , , 为等腰直角三角形, , 为等边三角形, , 故选C.4、A【解析】根
12、据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决【详解】由题意可得,故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组5、B【解析】试题解析:转盘被等分成6个扇形区域,而黄色区域占其中的一个,指针指向黄色区域的概率=故选A考点:几何概率6、C【解析】当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x
13、的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C7、A【解析】根据垂直的定义得到BCE=90,根据平行线的性质求出BCD=55,计算即可【详解】解:BCAE,BCE=90,CDAB,B=55,BCD=B=55,1=90-55=35,故选:A【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等8、D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:故选:D【点睛】
14、此题考查了列表法与树状图法,用到的知识点为:概率所求情况数与总情况数之比9、D【解析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值【详解】251(2)=1,18(3)4=20,4(7)5(3)=13,y=036(2)=1故选D【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键10、D【解析】由已知条件得到AD=AD=4,AO=AB=2,根据勾股定理得到OD= =2,于是得到结论【详解】解:AD=AD=4,AO=AB=1,OD=2,CD=4,CDAB,C(4,2),故选:D【点睛】本题考查正方形的性质,坐标与图形的性质,
15、勾股定理,正确的识别图形是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、4m1【解析】先求出直线y7与直线y2x1的交点为(4,7),再分类讨论:当点B在点A的右侧,则m43m1,当点B在点A的左侧,则3m14m,然后分别解关于m的不等式组即可【详解】解:当y7时,2x17,解得x4,所以直线y7与直线y2x1的交点为(4,7),当点B在点A的右侧,则m43m1,无解;当点B在点A的左侧,则3m14m,解得4m1,所以m的取值范围为4m1,故答案为4m1【点睛】本题考查了一次函数图象上点的坐标特征,根据直线y2x1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键1
16、2、(2,4)【解析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解【详解】解:点A (2,-4)与点B关于原点中心对称,点B的坐标为:(-2,4)故答案为:(-2,4)【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键13、5 见解析 【解析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与ABC全等的AMN,易证MNAC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,ABCMAN,AMN=BAC,MAD+CAB=MAD+AMN=90,MNAC,易解得M
17、AN以MN为底时的高为,AB2=ADAC,AD=AB2AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.14、1【解析】先利用垂径定理得到ODBC,则BE=CE,再证明OE为ABC的中位线得到,入境计算ODOE即可【详解】解:BDCD,ODBC,BECE,而OAOB,OE为ABC的中位线,DEODOE531故答案为1【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.15、(1,-4)【解析】利用旋转的性质即可解决问题.【详解】如图,由题意A(1,4),B(4,1),A根据旋转的性
18、质可知(4,-1),B(1,-4);所以,B(1,-4);故答案为(1,-4).【点睛】本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题16、60【解析】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解解:圆锥的侧面积=610=60cm1三、解答题(共8题,共72分)17、(1)直线l与相切,见解析;(2)见解析;(3)AF=.【解析】连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;先由角平分线的定义可知,然后再证明,于是可得到,最后依据等角对等边证明即可;先求得BE的长,然后证明,由相似三角形的性质可求得AE的长,于是可
19、得到AF的长【详解】直线l与相切理由:如图1所示:连接OE平分,直线l与相切平分,又,又,由得,即,解得;故答案为:(1)直线l与相切,见解析;(2)见解析;(3)AF=.【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得是解题的关键18、(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;(2)先利用求根公式得到然后利用有理数的整除性确定整数的值试题解析:(1)证明:m0,方程为一元二次方程, 此方程总有两个不相等的实数根;(2) 方程的两个实数根都是整
20、数,且m是整数,m=1或m=1.19、(1);(2);(2)小贝的说法正确,理由见解析,【解析】(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;(2)补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,由勾股定理可得AO长,易求AP长;(1)小贝的说法正确,补全弓形弧AD所在的O,连接ON,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在RtANO中,设AO=r,由勾股定理可求出r,在RtOEB中,由勾股定理可得BO长,易知BP长.【详解】解:(1)如
21、图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OCDCE为等边三角形,ED=EC,OD=OCOE垂直平分DC,DHDC=1四边形ABCD为正方形,OHD为等腰直角三角形,OH=DH=1,在RtDHE中,HEDH=1,OE=HE+OH=11;(2)如图2,补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,AD=6,DO=1,AO1, AP=AO+OP=11;(1)小贝的说法正确理由如下,如图1,补全弓形弧AD所在的O,连接ON,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的
22、最大距离,由题意知,点N为AD的中点,ANAD=1.6,ONAD,在RtANO中,设AO=r,则ON=r1.2AN2+ON2=AO2,1.62+(r1.2)2=r2,解得:r,AE=ON1.2,在RtOEB中,OE=AN=1.6,BE=ABAE,BO,BP=BO+PO,门角B到门窗弓形弧AD的最大距离为【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.20、 (1)证明见解析;(2).【解析】(1)根据切线的判定定理得到BC是O的切
23、线,再利用切线长定理证明即可;(2)根据含30的直角三角形的性质、正切的定义计算即可【详解】(1)AB是O直径,BCAB,BC是O的切线,CD切O于点D,BCCD;(2)连接BD,BCCD,C60,BCD是等边三角形,BDBC3,CBD60,ABD30,AB是O直径,ADB90,ADBDtanABD【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键21、见解析【解析】作AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.【详解】解:作AOB的平分线OE,作线段MN的垂直平分线GH,GH交OE于点P点P即为所求【点睛】本题考查
24、了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.22、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.【解析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可 (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总
25、利润w=总售价-总成本,求出最佳的进货方案【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.518=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0a5),由题意得,解得:600t800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0a3时,3-a0,t=800
26、时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3a5时,3-a0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解23、 (1) =x2+7+ (2) 见解析【解析】(1)根据阅读材料中
27、的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可【详解】(1)设x46x+1=(x2+1)(x2+a)+b=x4+(1a)x2+a+b,可得 ,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+ x20,x2+77;当x=0时,取得最小值0,当x=0时,x2+7+最小值为1,即原式的最小值为124、 (1)120,54;(2)补图见解析;(3)660名;(4).【解析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,
28、然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解【详解】解:(1)这次统计共抽查学生2420%120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是36054,故答案为120、54;(2)喜欢使用短信的人数为120182466210(人),条形统计图为:(3)1200660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和用样本估计总体