《黑龙江省鸡西市鸡东县2023年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省鸡西市鸡东县2023年中考联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列命题中,正确的是( )A菱形的对角线相等B平行四边形既是轴对称图形,又是中心对称图形C正方形的对角线不能相等D正方形的对角线相等且互相垂直21903年、英国物理学家卢瑟福通过
2、实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A810 年B1620 年C3240 年D4860 年3如图,AOB45,OC是AOB的角平分线,PMOB,垂足为点M,PNOB,PN与OA相交于点N,那么的值等于()ABCD4如图是二次函数yax2+bx+c的图象,对于下列说法:ac0,2a+b0,4acb2,a+b+c0,当x0时,y随x的增大而减小,其中正确的是()ABCD5已知一
3、元二次方程2x2+2x1=0的两个根为x1,x2,且x1x2,下列结论正确的是()Ax1+x2=1Bx1x2=1C|x1|x2|Dx12+x1=6小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:AB=BC,ABC=90,AC=BD,ACBD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )ABCD7用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A cmB3cmC4cmD4cm8的负倒数是()AB-C3D39在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据
4、的说法不正确的是()A众数是5B中位数是5C平均数是6D方差是3.610如图,、是的切线,点在上运动,且不与,重合,是直径,当时,的度数是()ABCD11一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )A30厘米、45厘米; B40厘米、80厘米; C80厘米、120厘米; D90厘米、120厘米12如果,那么的值为( )A1B2CD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k
5、0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_14一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_15如图,若正五边形和正六边形有一边重合,则BAC_16如图,直角ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_17有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则ADE的度数为()A144B84C74D5418肥皂泡的泡壁厚度大约是,用科学记数法表示为 _三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、
6、证明过程或演算步骤19(6分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高 线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命 题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”等腰三角形两腰上的中线相等 ;等腰三角形两底角的角平分线相等 ;有两条角平分线相等的三角形是等腰三角形 ;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例20(6分)如图,AB为半圆O的直径,AC是O的一条弦,D为的中点,作DEAC,交AB的延长线于点F
7、,连接DA求证:EF为半圆O的切线;若DADF6,求阴影区域的面积(结果保留根号和)21(6分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?22(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(6,n),与x
8、轴交于点C(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b的x的取值范围;(3)若点P在x轴上,且SACP=,求点P的坐标23(8分)如图,已知A(4,n),B(2,4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及AOB的面积;(3)求方程的解集(请直接写出答案)24(10分)在等腰RtABC中,ACB=90,AC=BC,点D是边BC上任意一点,连接AD,过点C作CEAD于点E(1)如图1,若BAD=15,且CE=1,求线段BD的长;(2)如图2,过点C作CFCE,且CF=CE,
9、连接FE并延长交AB于点M,连接BF,求证:AM=BM25(10分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示滑行时间x/s0123滑行距离y/m041224(1)根据表中数据求出二次函数的表达式现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式26(12分)如图,抛物线y=x2+bx+c(a0)与x轴交于点A(1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0m
10、3),连结DC并延长至E,使得CE=CD,连结BE,BC(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求BCE的面积最大值27(12分)解不等式组: .参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据菱形,平行四边形,正方形的性质定理判断即可【详解】A.菱形的对角线不一定相等, A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误; C. 正方形的对角线相等,C错误; D.正方形的对角线相等且互相垂直,D 正确; 故选:D【点睛】本题考查的是命题的真假判断,
11、正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理2、B【解析】根据半衰期的定义,函数图象的横坐标,可得答案【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键3、B【解析】过点P作PEOA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得POM=OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出PNE=AOB,再根据直角三角形解答【详解】如图,过点P作PEOA于点E,OP是AOB的平分线,PEPM
12、,PNOB,POMOPN,PNEPON+OPNPON+POMAOB45,故选:B【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键4、C【解析】根据二次函数的图象与性质即可求出答案【详解】解:由图象可知:a0,c0,ac0,故错误;由于对称轴可知:1,2a+b0,故正确;由于抛物线与x轴有两个交点,b24ac0,故正确;由图象可知:x1时,ya+b+c0,故正确;当x时,y随着x的增大而增大,故错误;故选:C【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基
13、础题型5、D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x20,x1x20,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断【详解】根据题意得x1+x2=1,x1x2=,故A、B选项错误;x1+x20,x1x20,x1、x2异号,且负数的绝对值大,故C选项错误;x1为一元二次方程2x2+2x1=0的根,2x12+2x11=0,x12+x1=,故D选项正确,故选D【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.6、B【解析】A、四边形ABCD是平行四边形,当AB=BC
14、时,平行四边形ABCD是菱形,当ABC=90时,菱形ABCD是正方形,故此选项正确,不合题意;B、四边形ABCD是平行四边形,当ABC=90时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、四边形ABCD是平行四边形,当ABC=90时,平行四边形ABCD是矩形,当ACBD时,矩形ABCD是正方形,故此选项正确,不合题意故选C7、C【解析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2
15、即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高【详解】L4(cm);圆锥的底面半径为422(cm),这个圆锥形筒的高为(cm)故选C【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形8、D【解析】根据倒数的定义,互为倒数的两数乘积为1,2=1再求出2的相反数即可解答【详解】根据倒数的定义得:2=1因此的负倒数是-2故选D【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.9、D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A、数据中5出现2次,所以众数为5
16、,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)5=6,此选项正确;D、方差为(76)2+(56)22+(36)2+(106)2=5.6,此选项错误;故选:D【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大10、B【解析】连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得【详解】解,连结OB,、是的切线,则,四边形APBO的内角和为360,即,又,故选:B【点睛】本题主要考查了切线的性质、圆周角
17、定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答11、C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.12、D【解析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案【详解】 故选:D【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键二、填空题:(本大题共6个小
18、题,每小题4分,共24分)13、【解析】解:如图,作DFy轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BHx轴于H,四边形ABCD是矩形,BAD=90,DAF+OAE=90,AEO+OAE=90,DAF=AEO,AB=2AD,E为AB的中点,AD=AE,在ADF和EAO中,DAF=AEO,AFD=AOE=90,AD=AE,ADFEAO(AAS),DF=OA=1,AF=OE,D(1,k),AF=k1,同理;AOEBHE,ADFCBG,BH=BG=DF=OA=1,EH=CG=OE=AF=k1,OK=2(k1)+1=2k1,CK=k2,C(2k1,k2),(2k1)
19、(k2)=1k,解得k1=,k2=,k10,k=故答案为 点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征图象上的点(x,y)的横纵坐标的积是定值k,即xy=k14、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:共有9种等可能的结果,两次摸出的球都是红球的由4种情况,两次摸出的球都是红球的概率是,故答案为.【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.15、132【解析】解:正五边形的内角=180-3605=108,正六边形的内角=180-36
20、06=120,BAC=360108120=132故答案为13216、1【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=1故答案为1点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变17、B【解析】正五边形的内角是ABC=108,AB=BC,CAB=36,正六边形的内角是ABE=E=120,ADE+E+ABE+CAB=360,ADE=36012012036=84,故选B18、710-
21、1【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.0007=710-1故答案为:710-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.【解析】(1)根据命题的真假判断即可;(2)根据全等三角形的判定
22、和性质进行证明即可【详解】(1)等腰三角形两腰上的中线相等是真命题;等腰三角形两底角的角平分线相等是真命题;有两条角平分线相等的三角形是等腰三角形是真命题;故答案为真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;已知:如图,ABC中,BD,CE分别是AC,BC边上的中线,且BDCE,求证:ABC是等腰三角形;证明:连接DE,过点D作DFEC,交BC的延长线于点F,BD,CE分别是AC,BC边上的中线,DE是ABC的中位线,DEBC,DFEC,四边形DECF是平行四边形,ECDF,BDCE,DFBD,DBFDFB,DFEC,FECB,ECBDBC,在DBC与ECB中,DBCE
23、CB,EBDC,ABAC,ABC是等腰三角形【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程20、(1)证明见解析 (2)6【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出ODEF,即可得出答案;(2)直接利用得出SACDSCOD,再利用S阴影SAEDS扇形COD,求出答案【详解】(1)证明:连接OD,D为弧BC的中点,CADBAD,OAOD,BADADO,CADADO,DEAC,E90,CAD+EDA90,即ADO+EDA90,ODEF,EF为半圆O的切线;(2)解:连接OC与CD,DADF,B
24、ADF,BADFCAD,又BAD+CAD+F90,F30,BAC60,OCOA,AOC为等边三角形,AOC60,COB120,ODEF,F30,DOF60,在RtODF中,DF6,ODDFtan306,在RtAED中,DA6,CAD30,DEDAsin303,EADAcos309,COD180AOCDOF60,由CODO,COD是等边三角形,OCD60,DCOAOC60,CDAB,故SACDSCOD,S阴影SAEDS扇形COD【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出SACDSCOD是解题关键21、(1)结果见解析;(2)不公平
25、,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平22、(1);(1)-6x0或1x;(3)(-1,0)或(-6,0)【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SACP=SBOC,即可得出|x+4|=1,解之即可得出结论【详解】(1)点A(m,3),B(-6,n)在双曲线y=上,m=1,n=-1,A(1,3),B(-6,-1)将(1,3),B(-6
26、,-1)带入y=kx+b, 得:,解得,直线的解析式为y=x+1(1)由函数图像可知,当kx+b时,-6x0或1x;(3)当y=x+1=0时,x=-4,点C(-4,0)设点P的坐标为(x,0),如图,SACP=SBOC,A(1,3),B(-6,-1),3|x-(-4)|=|0-(-4)|-1|,即|x+4|=1,解得:x1=-6,x1=-1点P的坐标为(-6,0)或(-1,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判
27、断不等式取值范围;(3)根据三角形的面积公式以及SACP=SBOC,得出|x+4|=123、(1)y=,y=x2(2)3(3)4x0或x2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集试题解析:(1)B(2,4)在y=上,m=1反比例函数的解析式
28、为y=点A(4,n)在y=上,n=2A(4,2)y=kx+b经过A(4,2),B(2,4),解之得一次函数的解析式为y=x2(2)C是直线AB与x轴的交点,当y=0时,x=2点C(2,0)OC=2SAOB=SACO+SBCO=22+24=3(3)不等式的解集为:4x0或x224、 (1) 2 ;(2)见解析【解析】分析:(1)先求得:CAE=45-15=30,根据直角三角形30角的性质可得AC=2CE=2,再得ECD=90-60=30,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明ACEBCF,则BFC=AEC=90,证明C、M、B、
29、F四点共圆,则BCM=MFB=45,由等腰三角形三线合一的性质可得AM=BM详解:(1)ACB=90,AC=BC,CAB=45,BAD=15,CAE=4515=30,RtACE中,CE=1,AC=2CE=2,RtCED中,ECD=9060=30,CD=2ED,设ED=x,则CD=2x,CE=x,x=1,x=,CD=2x=,BD=BCCD=ACCD=2;(2)如图2,连接CM,ACB=ECF=90,ACE=BCF,AC=BC,CE=CF,ACEBCF,BFC=AEC=90,CFE=45,MFB=45,CFM=CBA=45,C、M、B、F四点共圆,BCM=MFB=45,ACM=BCM=45,AC=
30、BC,AM=BM点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30角的性质和勾股定理,第二问有难度,构建辅助线,证明ACEBCF是关键25、(1)20s;(2)【解析】(1)利用待定系数法求出函数解析式,再求出y840时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可【详解】解:(1)该抛物线过点(0,0),设抛物线解析式为yax2+bx,将(1,4)、(2,12)代入,得:,解得:,所以抛物线的解析式为y2x2+2x, 当y840时,2x2+2x840,解得:x20(负值舍去),即他需要20s才能到达终点; (2)y2
31、x2+2x2(x+)2, 向左平移2个单位,再向下平移5个单位后函数解析式为y2(x+2+)252(x+)2【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律26、(1)y=x2+2x+1(2)2Ey2(1)当m=1.5时,SBCE有最大值,SBCE的最大值=【解析】分析:(1) 1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0m1即可求解;(1) 连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.详解:(1)抛物线 过点A(1,0)和B(1,0) (2)点C为线段DE中点设点E(a,b) 0m1, 当m=1时,纵坐标最小值为2 当m=1时,最大值为2点E纵坐标的范围为 (1)连结BD,过点D作x轴的垂线交BC于点HCE=CDH(m,-m+1) 当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.27、x2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由得:x3,由得:x2,不等式组的解集为:x2.