《黑龙江省五常市山林一中学达标名校2022-2023学年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省五常市山林一中学达标名校2022-2023学年中考数学适应性模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1左下图是一些完全相同的小正方体搭成的几何体的三视图 这个几何体只能是( )ABCD2一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟,则列方程正确
2、的是()ABCD32017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒将17200用科学记数法表示应为()A172102B17.2103C1.72104D0.1721054如图,在RtABC中,C=90,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则ABD的面积是()A18B36C54D725的化简结果为A3BCD96计算1(4)的结果为()A3B3C5D57在RtABC中,C=90,如果AC=2,cosA=,那么AB的长是()A3BCD8从1
3、,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y图象上的概率是()ABCD9下列各式中计算正确的是()Ax3x3=2x6B(xy2)3=xy6C(a3)2=a5Dt10t9=t10已知二次函数ya(x2)2+c,当xx1时,函数值为y1;当xx2时,函数值为y2,若|x12|x22|,则下列表达式正确的是()Ay1+y20By1y20Ca(y1y2)0Da(y1+y2)0二、填空题(本大题共6个小题,每小题3分,共18分)11如图,将一个长方形纸条折成如图的形状,若已知2=55,则1=_12如图,在RtABC中,C=90,AC=8,BC=1在边AB上取一点O,使BO=B
4、C,以点O为旋转中心,把ABC逆时针旋转90,得到ABC(点A、B、C的对应点分别是点A、B、C、),那么ABC与ABC的重叠部分的面积是_13如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,APO30先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30得到线段PC,连接BC若点A的坐标为(1,0),则线段BC的长为_14数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_15老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形
5、式如2x22x+1x2+5x3:则所捂住的多项式是_16如果m,n互为相反数,那么|m+n2016|=_三、解答题(共8题,共72分)17(8分)按要求化简:(a1),并选择你喜欢的整数a,b代入求值小聪计算这一题的过程如下:解:原式(a1)(a1)当a1,b1时,原式以上过程有两处关键性错误,第一次出错在第_步(填序号),原因:_;还有第_步出错(填序号),原因:_请你写出此题的正确解答过程18(8分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .19(8分)为鼓励大学
6、毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?20(8分)如图,ABC与A1B1C1是位
7、似图形(1)在网格上建立平面直角坐标系,使得点A的坐标为(6,1),点C1的坐标为(3,2),则点B的坐标为_;(2)以点A为位似中心,在网格图中作AB2C2,使AB2C2和ABC位似,且位似比为12;(3)在图上标出ABC与A1B1C1的位似中心P,并写出点P的坐标为_,计算四边形ABCP的周长为_21(8分)已知函数的图象与函数的图象交于点.(1)若,求的值和点P的坐标;(2)当时,结合函数图象,直接写出实数的取值范围.22(10分)如图,在中,是的中点,过点的直线交于点,交 的平行线于点,交于点,连接、求证:;请你判断与的大小关系,并说明理由23(12分)P是O内一点,过点P作O的任意一
8、条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于O的“幂值”或“幂值”的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于C的“幂值”为6,请直接写出b的取值范围_24为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和
9、小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”. (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ; (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A考点:几何体的三视图2、C【解析】解:因为
10、设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大3、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将17200用科学记数法表示为1.721故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,
11、表示时关键要正确确定a的值以及n的值4、B【解析】根据题意可知AP为CAB的平分线,由角平分线的性质得出CD=DH,再由三角形的面积公式可得出结论【详解】由题意可知AP为CAB的平分线,过点D作DHAB于点H,C=90,CD=1,CD=DH=1AB=18,SABD=ABDH=181=36故选B【点睛】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键5、A【解析】试题分析:根据二次根式的计算化简可得:故选A考点:二次根式的化简6、B【解析】原式利用减法法则变形,计算即可求出值【详解】,故选:B【点睛】本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.7、A【
12、解析】根据锐角三角函数的性质,可知cosA=,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.8、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y图象上的情况,再利用概率公式即可求得答案【详解】解:画树状图得:共有12种等可能的结果,点(m,n)恰好在反比例函数y图象上的有:(2,3),(1,6),(3,2),(6,1),点(m,n)在函数y图象上的概率是:故选B【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之
13、比9、D【解析】试题解析:A、 原式计算错误,故本选项错误;B、 原式计算错误,故本选项错误;C、 原式计算错误,故本选项错误;D、 原式计算正确,故本选项正确;故选D点睛:同底数幂相除,底数不变,指数相减.10、C【解析】分a1和a1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解【详解】解:a1时,二次函数图象开口向上,|x12|x22|,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,a1时,二次函数图象开口向下,|x12|x22|,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,综上所述,表达式正确的是a(y1y2)1故选:C【点
14、睛】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】由折叠可得3=18022,进而可得3的度数,然后再根据两直线平行,同旁内角互补可得1+3=180,进而可得1的度数【详解】解:由折叠可得3=18022=1801=70,ABCD,1+3=180,1=18070=1,故答案为112、【解析】先求得OD,AE,DE的值,再利用S四边形ODEF=SAOF-SADE即可.【详解】如图,OA=OA=4,则OD=OA=3,OD=3AD=1,可得DE=,AE =S四边形ODEF=SAOF-SAD
15、E=34-=.故答案为.【点睛】本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.13、2【解析】只要证明PBC是等腰直角三角形即可解决问题.【详解】解:APOBPO30,APB60,PAPCPB,APC30,BPC90,PBC是等腰直角三角形,OA1,APO30,PA2OA2,BCPC2,故答案为2【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明PBC是等腰直角三角形14、1【解析】根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得SEBMF=SFGDN,得SFGDN.【详解】SEBMF=SFGDN
16、,SEBMF=1,SFGDN=1.【点睛】本题考查面积的求解,解题的关键是读懂题意.15、x2+7x-4【解析】设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A,则根据题目信息可得 他所捂的多项式为故答案为【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;16、1【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n1|,m,n互为相反数,m+n=0,|m+n1|=|1|=1;故答案为1考点:1.绝对值的意义;2.相反数的性质.三、解答题(共8题,共72分)17、, 运算顺序错误; ,
17、 a等于1时,原式无意义 【解析】由于乘法和除法是同级运算,应当按照从左向右的顺序计算,运算顺序错误;当a1时,等于0,原式无意义【详解】运算顺序错误;故答案为,运算顺序错误;当a=1时,等于0,原式无意义故答案为a等于1时,原式无意义 当时,原式【点睛】本题考查了分式的化简求值,注意运算顺序和分式有意义的条件18、(1)详见解析;(2)详见解析;(3).【解析】(1)分别画出A、B、C三点的对应点即可解决问题;(2)由(1)得各顶点的坐标,然后利用位似图形的性质,即可求得各点的坐标,然后在图中作出位似三角形即可(3)求得所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,即为所求作;
18、(2)如图,即为所求作;(3)面积=44-24-22-24=6.【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.19、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元【解析】试题分析:(1)把x=24代入y=14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价成本价,得w=(x14)(14x+544),
19、把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令14x2+644x5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值试题解析:(1)当x=24时,y=14x+544=1424+544=344,344(1214)=3442=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x14)(14x+544)=14x2+644x5444=14(x34)2+144a=144,当x=34时,w有最大值144元即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:14x2+644x
20、5444=2,解得:x1=24,x2=1a=144,抛物线开口向下,结合图象可知:当24x1时,w2又x25,当24x25时,w2设政府每个月为他承担的总差价为p元,p=(1214)(14x+544)=24x+3k=244p随x的增大而减小,当x=25时,p有最小值544元即销售单价定为25元时,政府每个月为他承担的总差价最少为544元考点:二次函数的应用20、(1)作图见解析;点B的坐标为:(2,5);(2)作图见解析;(3) 【解析】分析:(1)直接利用已知点位置得出B点坐标即可; (2)直接利用位似图形的性质得出对应点位置进而得出答案; (3)直接利用位似图形的性质得出对应点交点即可位似
21、中心,再利用勾股定理得出四边形ABCP的周长详解:(1)如图所示:点B的坐标为:(2,5); 故答案为(2,5); (2)如图所示:AB2C2,即为所求; (3)如图所示:P点即为所求,P点坐标为:(2,1),四边形ABCP的周长为:+=4+2+2+2=6+4 故答案为6+4 点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键21、(1),或;(2) .【解析】【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;(2)画出两个函数的图象,观察函数的图象即可得.【详解】(1)函数的图象交于
22、点,n=mk,m=2n,n=2nk,k=,直线解析式为:y=x,解方程组,得,交点P的坐标为:(,)或(-,-); (2)由题意画出函数的图象与函数的图象如图所示,函数的图象与函数的交点P的坐标为(m,n),当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,当k1时,结合图象可知此时|m|GE,【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.23、(1)20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明见解析;(2)点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、
23、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP,连接AA、BB先证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(2)连接OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程
24、,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中,由勾股定理得:PB=2,PA=PB=2,O的“幂值”=22=20,故答案为:20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,点P关于O的“幂值”为定值;(2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,A
25、P=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b,直线CP的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键24、(1);(2) 【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率试题解析:(1)对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=考点:列表法与树状图法;概率公式